Collaborative Research: Computational Photo-Scatterography: Unraveling Scattered Photons for Bio-Imaging
合作研究:计算光散射术:解开生物成像的散射光子
基本信息
- 批准号:1730326
- 负责人:
- 金额:$ 70万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-03-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Much of the success of today's healthcare is due to rapid advances in our ability to collect and analyze high-resolution data about the human body. However, current methods to achieve cellular resolution are invasive (e.g., blood test or tissue biopsy), and non-invasive imaging modalities do not achieve cellular resolution. The principal goal of this Expeditions project is to develop computational imaging systems for non-invasive bio-imaging, deep beneath the skin, and at cellular-level resolutions. This project has the potential to fundamentally impact healthcare and medicine, by enabling live views of cross sections of human anatomy, simply by pointing a camera at any part of the body. This would put individual users at the center of their healthcare experience and make them true partners in their healthcare delivery. The health imaging devices that result from this project will act as an important pillar in the personalized medicine revolution. This research expedition also holds the potential to launch new healthcare paradigms for chronic disease management, pediatrics, low-resource healthcare, and disaster medical care. Beyond healthcare, making progress on the problem of cellular-scale deep-tissue imaging using light will push the frontiers of the fundamental problem of inverse scattering, which impacts numerous areas of science and engineering. The order of magnitude advances made in inverse scattering and imaging through scattering media will have significant cross-cutting applications in diverse areas such as basic science, consumer imaging, automotive navigation, robotics, surveillance, atmospheric science, and material science. Finally, projects with a single, easy-to-appreciate, and high-impact goal have the potential to inspire the next generation of scientists, attract diverse set of students driven by humanitarian and social causes, and become a platform for inclusion and innovation.The overarching goal of this project is to develop, test, and validate new computational imaging systems, to non-invasively image below the skin at tunable depths, in highly portable form-factors such as wearables or point-of-care devices. The main challenge is that light scatters as it travels through the human body, and in this process, the spatial information from different points within the body gets mixed up. A new concept, Computational Photo-Scatterography (CPS), is being applied in this project in order to computationally unravel the scattered photons in an imaging system, and allow creation of sharp images and accurate inferences. Recognizing that the brute-force complexity of unraveling scattered photons is prohibitively high, the project uses a computational co-design framework that leverages advances by team members from multiple domains: programmable illumination and optics, image sensors, machine learning, inverse graphics, and hybrid analog-digital computing. The project will use machine learning (ML) instead of physics-based de-scattering to speed up the solution of the underlying inverse problem. A combination of physics-based inverse graphics algorithms, and ML algorithms combining deep learning and generative modeling will be used to estimate tissue scattering parameters - motion due to blood flow induces time-variation in tissue parameters, which makes solving the inverse scattering problem more difficult. The project will use ML to create fast but approximate estimators, which will serve as accelerators for inverse scattering. The development of new sensors, able to capture the data necessary to reconstruct the structure of the tissue deep below the skin, constitutes the most important contribution of the project. These systems and algorithms will have the potential to break the current resolution limits of noninvasive bio-imaging by nearly two orders of magnitude, enabling cellular-level imaging at depths far beyond currently possible.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今医疗保健的成功很大程度上归功于我们收集和分析人体高分辨率数据的能力的快速进步。然而,目前实现细胞分辨率的方法是侵入性的(例如,血液测试或组织活检),并且非侵入性成像模态不能实现细胞分辨率。这个探险项目的主要目标是开发用于非侵入性生物成像的计算成像系统,深入皮肤下,并在细胞水平的分辨率。该项目有可能从根本上影响医疗保健和医学,只需将摄像机对准身体的任何部位,即可实时查看人体解剖学的横截面。这将使个人用户成为其医疗保健体验的中心,并使他们成为医疗保健服务的真正合作伙伴。该项目产生的健康成像设备将成为个性化医疗革命的重要支柱。这项研究还有望为慢性病管理、儿科、低资源医疗保健和灾难医疗保健推出新的医疗保健模式。除了医疗保健之外,在使用光的细胞级深层组织成像问题上取得进展将推动逆散射基本问题的前沿,这将影响许多科学和工程领域。通过散射介质在逆散射和成像方面取得的数量级进展将在基础科学、消费成像、汽车导航、机器人、监控、大气科学和材料科学等不同领域具有重要的交叉应用。最后,具有单一、易于理解和高影响力目标的项目有可能激发下一代科学家,吸引由人道主义和社会事业驱动的各种学生,并成为包容和创新的平台。该项目的总体目标是开发、测试和验证新的计算成像系统,以可调深度对皮肤以下进行非侵入性成像,以高度便携的形式,例如可穿戴设备或护理点设备。主要的挑战是光在穿过人体时会散射,在这个过程中,来自身体不同部位的空间信息会混合在一起。该项目中应用了一个新概念,即计算光散射术(CPS),以便通过计算解开成像系统中的散射光子,并创建清晰的图像和准确的推断。认识到解开散射光子的蛮力复杂性非常高,该项目使用了一个计算协同设计框架,该框架利用了来自多个领域的团队成员的进步:可编程照明和光学,图像传感器,机器学习,逆图形和混合模拟数字计算。 该项目将使用机器学习(ML)而不是基于物理的去散射,以加快底层逆问题的解决。将使用基于物理的逆图形算法和结合深度学习和生成建模的ML算法的组合来估计组织散射参数-由于血流引起的运动引起组织参数的时间变化,这使得解决逆散射问题更加困难。该项目将使用ML创建快速但近似的估计器,这将作为逆散射的加速器。开发新的传感器,能够捕获重建皮肤深处组织结构所需的数据,是该项目最重要的贡献。这些系统和算法将有可能突破目前非侵入性生物成像的分辨率限制近两个数量级,使细胞水平的成像深度远远超过目前可能的。该奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Latanya Sweeney其他文献
Technologies to Defeat Fraudulent Schemes Related to Email Requests Email Populations and Spam Filters
击败与电子邮件请求、电子邮件群体和垃圾邮件过滤器相关的欺诈计划的技术
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
E. Airoldi;Bradley Malin;Latanya Sweeney - 通讯作者:
Latanya Sweeney
Robust Hand Geometry Measurements for Person Identification using Active Appearance Models
使用主动外观模型进行稳健的手部几何测量以进行人员识别
- DOI:
10.1109/btas.2007.4401936 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
R. Gross;Yiheng Li;Latanya Sweeney;Xiaoqian Jiang;Wanhong Xu;Daniel Yurovsky - 通讯作者:
Daniel Yurovsky
Trail Re-Identification: Learning Who You Are From Where You Have Been
踪迹重新识别:从你去过的地方了解你是谁
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Bradley Malin;Latanya Sweeney;Elaina Newton - 通讯作者:
Elaina Newton
Latanya Sweeney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329759 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329760 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319896 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
- 批准号:
2309022 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403123 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
- 批准号:
2329758 - 财政年份:2024
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
- 批准号:
2311757 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Rapid computational modeling of wildfires and management with emphasis on human activity
合作研究:RAPID:野火和管理的快速计算建模,重点关注人类活动
- 批准号:
2345256 - 财政年份:2023
- 资助金额:
$ 70万 - 项目类别:
Standard Grant














{{item.name}}会员




