Collaborative Research: Computational Photo-Scatterography: Unraveling Scattered Photons for Bio-Imaging

合作研究:计算光散射术:解开生物成像的散射光子

基本信息

  • 批准号:
    1730574
  • 负责人:
  • 金额:
    $ 501.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Much of the success of today's healthcare is due to rapid advances in our ability to collect and analyze high-resolution data about the human body. However, current methods to achieve cellular resolution are invasive (e.g., blood test or tissue biopsy), and non-invasive imaging modalities do not achieve cellular resolution. The principal goal of this Expeditions project is to develop computational imaging systems for non-invasive bio-imaging, deep beneath the skin, and at cellular-level resolutions. This project has the potential to fundamentally impact healthcare and medicine, by enabling live views of cross sections of human anatomy, simply by pointing a camera at any part of the body. This would put individual users at the center of their healthcare experience and make them true partners in their healthcare delivery. The health imaging devices that result from this project will act as an important pillar in the personalized medicine revolution. This research expedition also holds the potential to launch new healthcare paradigms for chronic disease management, pediatrics, low-resource healthcare, and disaster medical care. Beyond healthcare, making progress on the problem of cellular-scale deep-tissue imaging using light will push the frontiers of the fundamental problem of inverse scattering, which impacts numerous areas of science and engineering. The order of magnitude advances made in inverse scattering and imaging through scattering media will have significant cross-cutting applications in diverse areas such as basic science, consumer imaging, automotive navigation, robotics, surveillance, atmospheric science, and material science. Finally, projects with a single, easy-to-appreciate, and high-impact goal have the potential to inspire the next generation of scientists, attract diverse set of students driven by humanitarian and social causes, and become a platform for inclusion and innovation.The overarching goal of this project is to develop, test, and validate new computational imaging systems, to non-invasively image below the skin at tunable depths, in highly portable form-factors such as wearables or point-of-care devices. The main challenge is that light scatters as it travels through the human body, and in this process, the spatial information from different points within the body gets mixed up. A new concept, Computational Photo-Scatterography (CPS), is being applied in this project in order to computationally unravel the scattered photons in an imaging system, and allow creation of sharp images and accurate inferences. Recognizing that the brute-force complexity of unraveling scattered photons is prohibitively high, the project uses a computational co-design framework that leverages advances by team members from multiple domains: programmable illumination and optics, image sensors, machine learning, inverse graphics, and hybrid analog-digital computing. The project will use machine learning (ML) instead of physics-based de-scattering to speed up the solution of the underlying inverse problem. A combination of physics-based inverse graphics algorithms, and ML algorithms combining deep learning and generative modeling will be used to estimate tissue scattering parameters - motion due to blood flow induces time-variation in tissue parameters, which makes solving the inverse scattering problem more difficult. The project will use ML to create fast but approximate estimators, which will serve as accelerators for inverse scattering. The development of new sensors, able to capture the data necessary to reconstruct the structure of the tissue deep below the skin, constitutes the most important contribution of the project. These systems and algorithms will have the potential to break the current resolution limits of noninvasive bio-imaging by nearly two orders of magnitude, enabling cellular-level imaging at depths far beyond currently possible.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
今天医疗保健的成功在很大程度上归功于我们收集和分析有关人体的高分辨率数据的能力的快速进步。然而,目前实现细胞分辨率的方法是有创的(例如,血液检测或组织活检),而非侵入性成像方式无法实现细胞分辨率。该探险项目的主要目标是开发用于非侵入性生物成像的计算成像系统,在皮肤深处,并在细胞级别的分辨率。该项目有可能从根本上影响医疗保健和医学,只需将相机对准身体的任何部位,即可实时查看人体解剖的横截面。这将使个人用户处于其医疗体验的中心,并使他们成为其医疗服务提供的真正合作伙伴。该项目产生的健康成像设备将成为个性化医学革命的重要支柱。这项研究探险还具有为慢性病管理、儿科、低资源保健和灾难医疗推出新的保健范例的潜力。除了医疗保健,利用光在细胞尺度的深层组织成像问题上取得进展将推动逆散射基本问题的前沿,该问题影响到科学和工程的许多领域。在反向散射和通过散射介质成像方面取得的数量级进展将在基础科学、消费者成像、汽车导航、机器人、监视、大气科学和材料科学等不同领域具有重要的交叉应用。最后,具有单一、易于理解和高影响力目标的项目有可能激励下一代科学家,吸引受人道主义和社会事业驱动的不同群体的学生,并成为包容和创新的平台。该项目的总体目标是开发、测试和验证新的计算成像系统,以高度便携的形式,如可穿戴设备或护理点设备,在可调深度的皮肤下进行非侵入性成像。主要的挑战是,光在穿过人体时会发生散射,在这个过程中,来自人体内不同点的空间信息会被混淆。一个新的概念,计算照片散射术(CPS),正在应用于这个项目,以计算解开成像系统中的散射光子,并允许创建清晰的图像和准确的推断。认识到分解散射光子的蛮力复杂性高得令人望而却步,该项目使用了一个计算合作设计框架,该框架利用了团队成员在多个领域的先进技术:可编程照明和光学、图像传感器、机器学习、逆向图形和混合模拟-数字计算。该项目将使用机器学习(ML)而不是基于物理的去散射来加快基本逆问题的求解。基于物理的逆图形学算法和结合深度学习和产生式建模的ML算法将被用于估计组织散射参数--由于血液流动引起的运动导致组织参数的时间变化,这使得逆散射问题的求解变得更加困难。该项目将使用ML来创建快速但近似的估计器,这些估计器将用作反向散射的加速器。新传感器的开发能够捕获重建皮肤深处组织结构所需的数据,这是该项目最重要的贡献。这些系统和算法将有可能打破目前非侵入性生物成像的分辨率限制近两个数量级,使细胞级别的成像能够在远远超过目前可能的深度进行。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(62)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MINER: Multiscale Implicit Neural Representation
MINER:多尺度隐式神经表示
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Saragadam, Vishwanath;Tan, Jasper;Balakrishnan, Guha;Baraniuk, Richard G.;Veeraraghavan, Ashok
  • 通讯作者:
    Veeraraghavan, Ashok
Snapshot polarimetric diffuse-specular separation
快照偏振漫反射镜面分离
  • DOI:
    10.1364/oe.460984
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Dave, Akshat;Hold-Geoffroy, Yannick;Hašan, Miloš;Sunkavalli, Kalyan;Veeraraghavan, Ashok
  • 通讯作者:
    Veeraraghavan, Ashok
Evaluating generative networks using Gaussian mixtures of image features
Thermal Image Processing via Physics-Inspired Deep Networks
High Resolution, Deep Imaging Using Confocal Time-of-Flight Diffuse Optical Tomography.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ashutosh Sabharwal其他文献

Scheduling and Power Allocation Dampens the Negative Effect of Channel Misreporting in Massive MIMO
调度和功率分配可减轻大规模 MIMO 中信道误报的负面影响
  • DOI:
    10.1109/tnet.2020.3014630
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    张战战;孙引;Ashutosh Sabharwal;陈智勇;夏斌
  • 通讯作者:
    夏斌
RACER: An LLM-powered Methodology for Scalable Analysis of Semi-structured Mental Health Interviews
RACER:一种由法学硕士支持的方法,用于半结构化心理健康访谈的可扩展分析
  • DOI:
    10.48550/arxiv.2402.02656
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Satpreet H Singh;Kevin Jiang;Kanchan Bhasin;Ashutosh Sabharwal;N. Moukaddam;Ankit B. Patel
  • 通讯作者:
    Ankit B. Patel
Dyadic Interaction Assessment from Free-living Audio for Depression Severity Assessment
用于抑郁严重程度评估的自由生活音频的二元交互评估
  • DOI:
    10.21437/interspeech.2022-11129
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bishal Lamichhane;N. Moukaddam;Ankit B. Patel;Ashutosh Sabharwal
  • 通讯作者:
    Ashutosh Sabharwal
Evaluating HbA1c-to-average glucose conversion with patient-specific kinetic models for diverse populations
使用针对不同人群的患者特异性动力学模型评估糖化血红蛋白(HbA1c)与平均血糖的转换
  • DOI:
    10.1038/s41598-024-72837-7
  • 发表时间:
    2024-09-27
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Sandra Emi Sato Imuro;Ashutosh Sabharwal;Wendy Bevier;David Kerr
  • 通讯作者:
    David Kerr
Principles for virtual health care to deliver real equity in diabetes.
实现糖尿病真正公平的虚拟医疗保健原则。
  • DOI:
    10.1016/s2213-8587(21)00176-5
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Kerr;Ashutosh Sabharwal
  • 通讯作者:
    Ashutosh Sabharwal

Ashutosh Sabharwal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ashutosh Sabharwal', 18)}}的其他基金

Collaborative Research: CNS Core: Large: 4D100: Foundations and Methods for City-scale 4D RF Imaging at 100+ GHz
合作研究:CNS 核心:大型:4D100:100 GHz 城市规模 4D 射频成像的基础和方法
  • 批准号:
    2215082
  • 财政年份:
    2022
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Medium: Information Freshness in Scalable and Energy Constrained Machine to Machine Wireless Networks
合作研究:CNS 核心:中:可扩展且能量受限的机器对机器无线网络中的信息新鲜度
  • 批准号:
    2106993
  • 财政年份:
    2021
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: CCRI: New: RFDataFactory: Principled Dataset Generation, Sharing and Maintenance Tools for the Wireless Community
合作研究:CCRI:新:RFDataFactory:无线社区的原则性数据集生成、共享和维护工具
  • 批准号:
    2120363
  • 财政年份:
    2021
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
I-Corps: Non-invasive Camera-based Blood Perfusion Imaging
I-Corps:基于相机的非侵入性血液灌注成像
  • 批准号:
    1747692
  • 财政年份:
    2017
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
MRI: Development of ScaleMed: A Platform for Scalable mHealth Research and Development
MRI:ScaleMed 的开发:可扩展的移动医疗研究和开发平台
  • 批准号:
    1429047
  • 财政年份:
    2014
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
I-Corps: SmartSpiro
I军团:SmartSpiro
  • 批准号:
    1443217
  • 财政年份:
    2014
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
NeTS: Large: Collaborative Research: Foundations of Hierarchical Full-Duplex Wireless Networks
NeTS:大型:协作研究:分层全双工无线网络的基础
  • 批准号:
    1314822
  • 财政年份:
    2013
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Continuing Grant
Student Travel Support for mHealthSys 2012
mHealthSys 2012 学生旅行支持
  • 批准号:
    1258389
  • 财政年份:
    2012
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
NeTS: Medium: Collaborative Research: Information Architectures for Femto-Aided Cellular Networks
NeTS:媒介:协作研究:毫微微辅助蜂窝网络的信息架构
  • 批准号:
    1161596
  • 财政年份:
    2012
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Continuing Grant
EAGER: Collaborative Research: CIF: Exploring the Fundamentals of Multihop Multiflow Wireless Networks
EAGER:协作研究:CIF:探索多跳多流无线网络的基础知识
  • 批准号:
    1144041
  • 财政年份:
    2011
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319895
  • 财政年份:
    2024
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329760
  • 财政年份:
    2024
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:Cyber​​Training:试点:PowerCyber​​:电力工程研究人员的计算培训
  • 批准号:
    2319896
  • 财政年份:
    2024
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329758
  • 财政年份:
    2024
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Elements: ProDM: Developing A Unified Progressive Data Management Library for Exascale Computational Science
协作研究:要素:ProDM:为百亿亿次计算科学开发统一的渐进式数据管理库
  • 批准号:
    2311757
  • 财政年份:
    2023
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Arecibo C3 - Center for Culturally Relevant and Inclusive Science Education, Computational Skills, and Community Engagement
合作研究:Arecibo C3 - 文化相关和包容性科学教育、计算技能和社区参与中心
  • 批准号:
    2321759
  • 财政年份:
    2023
  • 资助金额:
    $ 501.34万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了