I-Corps: Graphics Processing Unit-Based Data Management System Software

I-Corps:基于图形处理单元的数据管理系统软件

基本信息

  • 批准号:
    1730600
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-03-01 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project lies in the improved database productivity that the technology can bring to many industries. Existing software systems based on traditional pull-based database engine design and CPU hardware often do not provide the desired high throughput and/or short response time in the management and analysis of large-scale data. The technology developed here offers a more efficient solution to meet such challenges and its commercialization will potentially impact the practice of data management and analysis in a large number of industries including healthcare, retailing, and online advertising. Successful deployment of these the systems developed here will enable a range of industry sectors to efficiently harness big data analytics.This I-Corps project explores the commercial potential of a data management system with a novel software architecture and advanced data analytics functionalities built on massively parallel hardware such as Graphics Processing Units (GPUs). The technology features a data processing engine under a data streaming (push-based) design and achieves very high utilization of a multitude of computing resources on GPUs. Current experiments show that the data processing throughput and latency are about one order of magnitude better than best known systems built for the same purposes. The research behind this technology complements current work in database systems and parallel computing fields. The system-oriented approach is in sharp contrast to existing GPU work that typically focuses on solving individual problems and thus highly creative. Innovations are also seen in the formal methods used for meeting system design challenges such as dynamic resource allocation in GPUs.
I-Corps项目更广泛的影响/商业潜力在于该技术可以为许多行业带来更高的数据库生产力。基于传统的基于拉取的数据库引擎设计和CPU硬件的现有软件系统在大规模数据的管理和分析中通常不提供期望的高吞吐量和/或短响应时间。这里开发的技术提供了一个更有效的解决方案来应对这些挑战,其商业化将可能影响包括医疗保健,零售和在线广告在内的大量行业的数据管理和分析实践。I-Corps项目旨在探索数据管理系统的商业潜力,该系统具有新颖的软件架构和先进的数据分析功能,并构建在图形处理单元(GPU)等大规模并行硬件上。该技术采用数据流(基于推送)设计下的数据处理引擎,并实现了GPU上大量计算资源的极高利用率。目前的实验表明,数据处理吞吐量和延迟比为相同目的而构建的最佳已知系统好一个数量级。 该技术背后的研究补充了数据库系统和并行计算领域的当前工作。面向系统的方法与现有的GPU工作形成鲜明对比,后者通常专注于解决单个问题,因此具有高度的创造性。创新也出现在用于满足系统设计挑战的正式方法中,例如GPU中的动态资源分配。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yicheng Tu其他文献

Introduction to special issue on scientific and statistical data management in the age of AI 2021
  • DOI:
    10.1007/s10619-022-07420-y
  • 发表时间:
    2022-08-22
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Qiang Zhu;Xingquan Zhu;Yicheng Tu
  • 通讯作者:
    Yicheng Tu
Paired Swarm Optimized Relational Vector Learning for FDI Attack Detection in IoT-Aided Smart Grid
用于物联网辅助智能电网中 FDI 攻击检测的配对群优化关系向量学习
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Sumarga Kumar Sah Tyagi;Rahul Yadav;D. Jain;Yicheng Tu;Weizhe Zhang
  • 通讯作者:
    Weizhe Zhang
Query batching optimization in database systems
  • DOI:
    10.1016/j.cor.2020.104983
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mehrad Eslami;Vahid Mahmoodian;Iman Dayarian;Hadi Charkhgard;Yicheng Tu
  • 通讯作者:
    Yicheng Tu
Computing Group-By and Aggregates on Massively Parallel Systems
在大规模并行系统上计算分组和聚合

Yicheng Tu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yicheng Tu', 18)}}的其他基金

II-New: A Research Platform for Heterogeneous, Massively Parallel Computing
II-New:异构大规模并行计算研究平台
  • 批准号:
    1513126
  • 财政年份:
    2015
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Enabling high-throughput data management in scientific domains
职业:在科学领域实现高通量数据管理
  • 批准号:
    1253980
  • 财政年份:
    2013
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
III: Small: Collaborative Research: Making Databases Green - An Energy-Aware DBMS Approach
III:小型:协作研究:使数据库变得绿色 - 一种节能意识 DBMS 方法
  • 批准号:
    1117699
  • 财政年份:
    2011
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: Continental-scale, high-order, high-spatial-resolution, ice flow modeling based on graphics processing units (GPUs)
RII Track-4:NSF:基于图形处理单元 (GPU) 的大陆尺度、高阶、高空间分辨率冰流建模
  • 批准号:
    2327095
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Accelerating Real-time Hybrid Physical-Numerical Simulations in Natural Hazards Engineering with a Graphics Processing Unit (GPU)-driven Paradigm
职业:利用图形处理单元 (GPU) 驱动的范例加速自然灾害工程中的实时混合物理数值模拟
  • 批准号:
    2310171
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
CAREER: Accelerating Real-time Hybrid Physical-Numerical Simulations in Natural Hazards Engineering with a Graphics Processing Unit (GPU)-driven Paradigm
职业:利用图形处理单元 (GPU) 驱动的范例加速自然灾害工程中的实时混合物理数值模拟
  • 批准号:
    2145665
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Continuing Grant
Accelerating Real-Time Ray Tracing on Mobile Graphics Processing Units (GPUs)
加速移动图形处理单元 (GPU) 上的实时光线追踪
  • 批准号:
    569730-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Just-in-Time Compilation of Big Data Analytics for Graphics Processing Units
图形处理单元大数据分析的即时编译
  • 批准号:
    534143-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Graphics Processing Unit Micro-Architecture for Safety-critical Systems
适用于安全关键系统的图形处理单元微架构
  • 批准号:
    551913-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    University Undergraduate Student Research Awards
Just-in-Time Compilation of Big Data Analytics for Graphics Processing Units
图形处理单元大数据分析的即时编译
  • 批准号:
    534143-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Just-in-Time Compilation of Big Data Analytics for Graphics Processing Units
图形处理单元大数据分析的即时编译
  • 批准号:
    534143-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
An enhanced online graphics processing unit facility for Early Career Researchers
为早期职业研究人员提供的增强型在线图形处理单元设施
  • 批准号:
    EP/S017755/1
  • 财政年份:
    2018
  • 资助金额:
    $ 5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了