SpecEES: Collaborative Research: Enabling Spectrum and Energy-Efficient Dynamic Spectrum Access Wireless Networks using Neuromorphic Computing
SpecEES:协作研究:使用神经形态计算实现频谱和节能动态频谱接入无线网络
基本信息
- 批准号:1731672
- 负责人:
- 金额:$ 22.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
During the last two decades, the use of Radio Frequency (RF) spectrum has increased tremendously due to the ever growing demand for wireless connectivity. The existing network technologies that support the current wireless data demand are expected to increase their capacity significantly in the next decade, calling for spectrum and energy efficient communication strategies. There are two popular approaches to efficiently utilize the RF spectrum: One is the cognitive radio networks which allow mobile users to share the spectrum that has been primarily allocated to other services such as television broadcasting, global position system (GPS), radar, weather forecasting, etc., provided that the mobile users impose limited interference to existing services. Another approach is to enhance the mobile broadband networks via expanded bandwidth, massive Multiple-Input Multiple-Output (MIMO) systems, and densified heterogeneous networks (HetNets). However, both approaches have limitations and have different impacts on spectrum efficiency and energy efficiency. In addition, current hardware platforms exhibit formidable challenges in supporting high computational complexity and low power consumption. This project introduces a novel network architecture and its application-specific hardware optimization using neuromorphic computing devices. The new wireless network architecture allows mobile users to perform spatio-temporal spectrum sensing and actively search for dynamic spectrum access (DSA) opportunities to enable short-range and local communications. Meanwhile, neuromorphic computing devices that mimic bio-neurological processes will be designed to tackle the high computational complexity of the new dynamic spectrum access approach with extremely low power consumption. In this way, we will be able to enable our nation's next-generation wireless communications and networking that are intelligent, spectrum-efficient, and energy-efficient in a dynamic spectrum environment. The developed concepts and technologies will also help achieve National Broadband Plan which targets at significant improvements in the efficiency of RF spectrum utilization. The project has an extensive education and outreach plan which includes designing new course components on energy-efficient communications, analog neuron circuits, and computational intelligence for wireless networks, joint training of graduate and undergraduate researchers between the two collaborative institutions, and outreach to telecommunication industry and underrepresented students through seminars and diversity programs.Short-range and local communications are extremely beneficial for spectrum and energy efficiency. The research objective of the project is to 1) design DSA-enabled HetNets to enable short-range/local spectrum access to improve the spectrum and energy efficiency, and 2) leverage neuromorphic computing architecture to efficiently solve the associated resource allocation problems with extremely high energy efficiency. To achieve the goal, the project is organized into four interconnected research thrusts. Thrust 1 focuses on spatio-temporal spectrum sensing with MIMO transceivers. Thrust 2 investigates cooperative communications and resource allocation for DSA-enabled HetNets. Thrust 3 studies neuromorphic computing based hardware design for DSA-enabled HetNets. Thrust 4 develops and evaluates the hardware-software test-bed. The proposed paradigm shift from centralized base-station-controlled approach to the decentralized approach will revolutionize the future wireless network design, where the individual users will play stronger role in spectrum access and drastically change the network topology by utilizing neuromorphic computing devices. The hardware-software co-design methodologies developed in this project can be readily applied to other related fields: computer communication networks, cyber security, and energy-harvesting communications, etc.
在过去二十年中,由于对无线连接的需求不断增长,射频(RF)频谱的使用大幅增加。支持当前无线数据需求的现有网络技术预计将在未来十年内显着增加其容量,这需要频谱和节能的通信策略。有两种流行的方法来有效地利用RF频谱:一种是认知无线电网络,其允许移动的用户共享主要被分配给其他服务(诸如电视广播、全球定位系统(GPS)、雷达、天气预报等)的频谱,只要移动的用户对现有服务施加有限的干扰。另一种方法是通过扩展带宽、大规模多输入多输出(MIMO)系统和密集异构网络(HetNet)来增强移动的宽带网络。然而,这两种方法都有局限性,并且对频谱效率和能量效率具有不同的影响。此外,当前的硬件平台在支持高计算复杂度和低功耗方面表现出巨大的挑战。该项目介绍了一种新的网络架构及其应用特定的硬件优化使用神经形态计算设备。新的无线网络架构允许移动的用户执行时空频谱感测并主动搜索动态频谱接入(DSA)机会以实现短距离和本地通信。与此同时,模拟生物神经过程的神经形态计算设备将被设计为以极低的功耗解决新的动态频谱接入方法的高计算复杂性。 通过这种方式,我们将能够在动态频谱环境中实现智能、频谱高效和节能的下一代无线通信和网络。开发的概念和技术也将有助于实现国家宽带计划,该计划旨在显著提高射频频谱利用效率。该项目有一个广泛的教育和推广计划,其中包括设计关于节能通信、模拟神经元电路和无线网络计算智能的新课程组成部分,两个合作机构之间的研究生和本科生研究人员的联合培训,通过研讨会和多元化项目,与电信行业和代表性不足的学生进行接触。范围和本地通信对于频谱和能量效率是极其有益的。该项目的研究目标是:1)设计支持DSA的HetNet,以实现短距离/本地频谱接入,从而提高频谱和能源效率; 2)利用神经形态计算架构,以极高的能源效率有效解决相关的资源分配问题。为了实现这一目标,该项目分为四个相互关联的研究重点。推力1集中于使用MIMO收发器的时空频谱感测。推力2研究DSA使能的HetNet的协作通信和资源分配。Thrust 3研究了基于神经形态计算的DSA支持的HetNet硬件设计。推力4开发和评估硬件软件测试平台。从集中式基站控制的方法到分散式方法的模式转变将彻底改变未来的无线网络设计,其中个人用户将在频谱接入中发挥更大的作用,并通过利用神经形态计算设备来彻底改变网络拓扑。本项目所开发的软硬件协同设计方法可以很容易地应用于其他相关领域:计算机通信网络、网络安全和能量收集通信等。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Dynamic Spectrum Access for Femtocell Networks: A Graph Neural Network Based Learning Approach
- DOI:10.1109/icnc47757.2020.9049731
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:He Jiang;Haibo He;Lingjia Liu
- 通讯作者:He Jiang;Haibo He;Lingjia Liu
ar-MOEA: A Novel Preference-Based Dominance Relation for Evolutionary Multiobjective Optimization
- DOI:10.1109/tevc.2018.2884133
- 发表时间:2019-10
- 期刊:
- 影响因子:14.3
- 作者:Jun Yi;Junren Bai;Haibo He;Jun Peng;Dedong Tang
- 通讯作者:Jun Yi;Junren Bai;Haibo He;Jun Peng;Dedong Tang
SDE: A Novel Clustering Framework Based on Sparsity-Density Entropy
- DOI:10.1109/tkde.2018.2792021
- 发表时间:2018-08
- 期刊:
- 影响因子:8.9
- 作者:Sheng Li;Lusi Li;Jun Yan;Haibo He
- 通讯作者:Sheng Li;Lusi Li;Jun Yan;Haibo He
Adversarial Domain Adaptation via Category Transfer
- DOI:10.1109/ijcnn.2019.8851925
- 发表时间:2019-07
- 期刊:
- 影响因子:0
- 作者:Lusi Li;Haibo He;Jie Li;Guang Yang
- 通讯作者:Lusi Li;Haibo He;Jie Li;Guang Yang
Multi-view Semi-Supervised Learning for Cooperative Spectrum Sensing
用于协作频谱感知的多视图半监督学习
- DOI:10.1109/ssci50451.2021.9660075
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Li, Lusi;Slayton, Laura;Li, Hepeng;He, Haibo
- 通讯作者:He, Haibo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haibo He其他文献
A Multifactorial Evolutionary Algorithm for Multitasking Under Interval Uncertainties
区间不确定性下多任务处理的多因素进化算法
- DOI:
10.1109/tevc.2020.2975381 - 发表时间:
2020-02 - 期刊:
- 影响因子:14.3
- 作者:
Jun Yi;Junren Bai;Haibo He;Wei Zhou;Lizhong Yao - 通讯作者:
Lizhong Yao
Team-Triggered Practical Fixed-Time Consensus of Double-Integrator Agents With Uncertain Disturbance
团队触发的具有不确定干扰的双积分器智能体的实际固定时间共识
- DOI:
10.1109/tcyb.2020.2999199 - 发表时间:
2020-06 - 期刊:
- 影响因子:11.8
- 作者:
Jian Liu;Yao Yu;Haibo He;Changyin Sun - 通讯作者:
Changyin Sun
Adaptive Critic Designs for Event-Triggered Robust Control of Nonlinear Systems With Unknown Dynamics
未知动力学非线性系统事件触发鲁棒控制的自适应批评设计
- DOI:
10.1109/tcyb.2018.2823199 - 发表时间:
2019-06 - 期刊:
- 影响因子:11.8
- 作者:
Xiong Yang;Haibo He - 通讯作者:
Haibo He
Numerical Simulation and Analysis of Three Dimensional Flow Field of a Counter-Rotating Fan with Various Angles
不同角度对转风机三维流场数值模拟与分析
- DOI:
10.14257/ijca.2013.6.6.13 - 发表时间:
2013-12 - 期刊:
- 影响因子:0
- 作者:
Jiabin Wen;Haibo He - 通讯作者:
Haibo He
Event-triggered optimal control for nonlinear constrained-inputsystems with partially unknown dynamics via adaptive dynamic programming
通过自适应动态规划对部分未知动态的非线性约束输入系统进行事件触发最优控制
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:7.7
- 作者:
Yuanheng Zhu;Dongbin Zhao;Haibo He;Junhong Ji - 通讯作者:
Junhong Ji
Haibo He的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haibo He', 18)}}的其他基金
Collaborative Research: Autonomous Hierarchical Adaptive Dynamic Programming for Decision Making in Complex Environment
协作研究:复杂环境下自主分层自适应动态规划决策
- 批准号:
1917275 - 财政年份:2019
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Dynamic Robot Guides for Emergency Evacuations
NRI:协作研究:紧急疏散动态机器人指南
- 批准号:
1526835 - 财政年份:2015
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
TC: Small: Secure the Electrical Power Grid: Smart Grid versus Smart Attacks
TC:小:保护电网:智能电网与智能攻击
- 批准号:
1117314 - 财政年份:2011
- 资助金额:
$ 22.12万 - 项目类别:
Continuing Grant
CAREER: AIS - An Integrated Optimization and Prediction Framework for Machine Intelligence based on Adaptive Dynamic Programming
职业:AIS - 基于自适应动态规划的机器智能集成优化和预测框架
- 批准号:
1053717 - 财政年份:2011
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: SpecEES: Designing A Spectrally Efficient and Energy Efficient Data Aided Demand Driven Elastic Architecture for future Networks (SpiderNET)
合作研究:SpecEES:为未来网络设计频谱效率高、能源效率高的数据辅助需求驱动弹性架构 (SpiderNET)
- 批准号:
2323300 - 财政年份:2023
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
- 批准号:
2300955 - 财政年份:2022
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
- 批准号:
2109971 - 财政年份:2020
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
Collaborative Research: SpecEES: Towards Energy and Spectrally Efficient Millimeter Wave MIMO Platforms - A Unified System, Circuits, and Machine Learning Framework
合作研究:SpecEES:迈向能源和频谱高效的毫米波 MIMO 平台 - 统一的系统、电路和机器学习框架
- 批准号:
2116498 - 财政年份:2020
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
SpecEES: Collaborative Research: DroTerNet: Coexistence between Drone and Terrestrial Wireless Networks
SpecEES:协作研究:DroTerNet:无人机与地面无线网络的共存
- 批准号:
1923601 - 财政年份:2019
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
Collaborative Research: SpecEES: Towards Energy and Spectrally Efficient Millimeter Wave MIMO Platforms - A Unified System, Circuits, and Machine Learning Framework
合作研究:SpecEES:迈向能源和频谱高效的毫米波 MIMO 平台 - 统一的系统、电路和机器学习框架
- 批准号:
1923676 - 财政年份:2019
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
- 批准号:
1923712 - 财政年份:2019
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
Collaborative Research: SpecEES: Towards Energy and Spectrally Efficient Millimeter Wave MIMO Platforms - A Unified System, Circuits, and Machine Learning Framework
合作研究:SpecEES:迈向能源和频谱高效的毫米波 MIMO 平台 - 统一的系统、电路和机器学习框架
- 批准号:
1923858 - 财政年份:2019
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
RUI: SpecEES: Collaborative Research: Enabling Secure, Energy-Efficient, and Smart In-Band Full Duplex Wireless
RUI:SpecEES:协作研究:实现安全、节能和智能的带内全双工无线
- 批准号:
1923409 - 财政年份:2019
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant
SpecEES: Collaborative Research: DroTerNet: Coexistence between Drone and Terrestrial Wireless Networks
SpecEES:协作研究:DroTerNet:无人机与地面无线网络的共存
- 批准号:
1923807 - 财政年份:2019
- 资助金额:
$ 22.12万 - 项目类别:
Standard Grant