CompCog: Bridging the gap between behavioral and neural correlates of attention using a computational model of neural mechanisms
CompCog:使用神经机制的计算模型弥合注意力的行为和神经相关性之间的差距
基本信息
- 批准号:1734220
- 负责人:
- 金额:$ 39.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A challenge for our visual system is being able to focus on information important for our current task, while also being responsive to unexpected events. For example, when driving, if one is looking carefully for a street sign, one should also be able to stop to avoid a car pulling out from a side street. To address this challenge, our brain uses an attentional system that monitors the environment for important information and decides what should be focused at each moment in time. The proposed research will investigate this attentional system, using experiments that examine behaviors and brain activity, as well as with a computer model that integrates other findings from many different labs. This model will help researchers to better understand how brainwaves are related to both the activity of brain cells and behavior when visual attention is engaged. The model will be made publicly available in a format that anyone can run on their own computer, so that other researchers can use it to help advance our understanding in many important areas, such as how cars and other automated systems will be able to navigate and interact safely with the world. Finally, this work supports educational efforts aimed at engaging undergraduate students with a highly technical approach to scientific investigation and funds outreach efforts in high schools to give students the opportunity to develop a greater interest in neuroscience and robotics.This work builds on decades of research into the nature of visual attention, which has generated a large volume of data about how the brain processes information. Based on this work, the researchers have created a computational model of attention that attempts to simulate how the brain chooses which pieces of information to attend. To validate this model, they will conduct a series of eight new experiments that test specific predictions of the model. These tests will provide information about how the different layers of neurons in the model should communicate to most closely approximate the human brain's attentional system. The final model will be compiled into a version that can be downloaded by other researchers or educators. This model will provide a polished graphical user interface, allowing novice users to explore how the simulated attention system works, and how brainwaves are generated. A further objective will be to develop a new kind of experiment that tests the delay between vision and attention. The data from this paradigm will give scientists crucial details about how the human visual system temporarily holds information while determining what to do with it.
我们的视觉系统面临的一个挑战是能够专注于对我们当前任务重要的信息,同时对意外事件做出反应。 例如,在开车时,如果一个人正在仔细寻找路标,他也应该能够停下来,以避免一辆汽车从小街上开出来。为了应对这一挑战,我们的大脑使用注意力系统来监测环境中的重要信息,并决定在每个时刻应该关注什么。这项拟议中的研究将调查这种注意力系统,使用检查行为和大脑活动的实验,以及整合来自许多不同实验室的其他发现的计算机模型。这个模型将帮助研究人员更好地理解当视觉注意力被吸引时,脑电波是如何与脑细胞的活动和行为相关的。该模型将以任何人都可以在自己的计算机上运行的格式公开提供,以便其他研究人员可以使用它来帮助推进我们在许多重要领域的理解,例如汽车和其他自动化系统如何能够安全地与世界进行导航和互动。最后,这项工作支持旨在让本科生参与科学研究的高技术方法的教育工作,并资助高中的外展工作,让学生有机会对神经科学和机器人技术产生更大的兴趣。这项工作建立在数十年对视觉注意力本质的研究基础上,该研究产生了大量关于大脑如何处理信息的数据。在这项工作的基础上,研究人员创建了一个注意力的计算模型,试图模拟大脑如何选择要关注的信息。为了验证这个模型,他们将进行一系列的八个新实验,以测试模型的具体预测。这些测试将提供有关模型中不同层神经元应如何通信的信息,以最接近人类大脑的注意力系统。最终的模型将被编译成一个版本,可供其他研究人员或教育工作者下载。该模型将提供精美的图形用户界面,允许新手用户探索模拟注意力系统的工作原理以及脑电波的产生方式。另一个目标是开发一种新的实验,测试视觉和注意力之间的延迟。来自这种范式的数据将为科学家提供关于人类视觉系统如何在决定如何处理信息时暂时保存信息的关键细节。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
And like that, they were gone: A failure to remember recently attended unique faces
- DOI:10.3758/s13423-021-01965-2
- 发表时间:2021-02
- 期刊:
- 影响因子:3.5
- 作者:Joyce Tam;Michael K. Mugno;Ryan E. O’Donnell;Brad Wyble
- 通讯作者:Joyce Tam;Michael K. Mugno;Ryan E. O’Donnell;Brad Wyble
Memories of Visual Events Can Be Formed Without Specific Spatial Coordinates
无需特定空间坐标即可形成视觉事件的记忆
- DOI:10.5334/joc.104
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Hedayati, Shekoofeh;Wyble, Brad
- 通讯作者:Wyble, Brad
What the flip? What the P-N flip can tell us about proactive suppression
- DOI:10.1162/jocn_a_01901
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Joyce Tam;Chloe Callahan-Flintoft;Brad Wyble
- 通讯作者:Joyce Tam;Chloe Callahan-Flintoft;Brad Wyble
Attention with or without working memory: mnemonic reselection of attended information
- DOI:10.1016/j.tics.2023.08.010
- 发表时间:2023-09
- 期刊:
- 影响因子:19.9
- 作者:Yingtao Fu;Chenxiao Guan;Joyce Tam;Ryan E. O’Donnell;Mowei Shen;B. Wyble;Hui Chen
- 通讯作者:Yingtao Fu;Chenxiao Guan;Joyce Tam;Ryan E. O’Donnell;Mowei Shen;B. Wyble;Hui Chen
The influence of category representativeness on the low prevalence effect in visual search
视觉搜索中类别代表性对低流行效应的影响
- DOI:10.3758/s13423-022-02183-0
- 发表时间:2023
- 期刊:
- 影响因子:3.5
- 作者:O’Donnell, Ryan E.;Wyble, Brad
- 通讯作者:Wyble, Brad
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradley Wyble其他文献
Bradley Wyble的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradley Wyble', 18)}}的其他基金
CompCog: HNDS-R: Self-Supervision of Visual Learning From Spatiotemporal Context
CompCog:HNDS-R:时空背景下视觉学习的自我监督
- 批准号:
2216127 - 财政年份:2022
- 资助金额:
$ 39.07万 - 项目类别:
Standard Grant
Integrating Spatial and Temporal Models of Visual Attention
整合视觉注意力的时空模型
- 批准号:
1331073 - 财政年份:2013
- 资助金额:
$ 39.07万 - 项目类别:
Standard Grant
相似海外基金
Cybersecurity Workforce: Bridging the Gap in Appalachian Ohio (Cyber-Workforce)
网络安全劳动力:缩小俄亥俄州阿巴拉契亚地区的差距(网络劳动力)
- 批准号:
2350520 - 财政年份:2024
- 资助金额:
$ 39.07万 - 项目类别:
Standard Grant
Bridging the gap between Key-Evolving Signatures and Their Applications
弥合密钥演化签名及其应用之间的差距
- 批准号:
DP240100017 - 财政年份:2024
- 资助金额:
$ 39.07万 - 项目类别:
Discovery Projects
Bridging the Gender Data Gap: Using Census Data to Understand Gender Inequalities Across the UK
缩小性别数据差距:利用人口普查数据了解英国各地的性别不平等
- 批准号:
ES/Z502753/1 - 财政年份:2024
- 资助金额:
$ 39.07万 - 项目类别:
Research Grant
Bridging the meaning gap: A computational approach to semantic variation
弥合意义差距:语义变异的计算方法
- 批准号:
DP240101873 - 财政年份:2024
- 资助金额:
$ 39.07万 - 项目类别:
Discovery Projects
Polly: Bridging the gap in Children’s speech and language therapy through AI-powered SaaS
Polly:通过人工智能驱动的 SaaS 缩小儿童言语和语言治疗方面的差距
- 批准号:
10106658 - 财政年份:2024
- 资助金额:
$ 39.07万 - 项目类别:
Launchpad
Bridging the gap between environment and patient; investigating the risk and transmission of antifungal resistance in Aspergillus fumigatus
弥合环境与患者之间的差距;
- 批准号:
MR/Y034465/1 - 财政年份:2024
- 资助金额:
$ 39.07万 - 项目类别:
Research Grant
Collaborative Research: Bridging the scale gap between local and regional methane and carbon dioxide isotopic fluxes in the Arctic
合作研究:缩小北极当地和区域甲烷和二氧化碳同位素通量之间的规模差距
- 批准号:
2427291 - 财政年份:2024
- 资助金额:
$ 39.07万 - 项目类别:
Continuing Grant
Bridging the Gap: Next-Gen Tools for Accurate Prediction of Disordered Protein Binding Sites
弥合差距:准确预测无序蛋白质结合位点的下一代工具
- 批准号:
24K15172 - 财政年份:2024
- 资助金额:
$ 39.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Education DCL: EAGER: Redefining Cybersecurity Education for Criminal Justice Professionals: Bridging the Gap in National Cyber Capabilities
合作研究:教育 DCL:EAGER:重新定义刑事司法专业人员的网络安全教育:缩小国家网络能力的差距
- 批准号:
2334196 - 财政年份:2023
- 资助金额:
$ 39.07万 - 项目类别:
Standard Grant
CAREER: Bridging the STEM Skills and Employment Gap for the Future of Work
职业:弥合 STEM 技能和就业差距,打造未来工作
- 批准号:
2239538 - 财政年份:2023
- 资助金额:
$ 39.07万 - 项目类别:
Continuing Grant