Collaborative Research: Evaluating fault creep in California using geodetic and seismic observations

合作研究:利用大地测量和地震观测评估加利福尼亚州的断层蠕变

基本信息

  • 批准号:
    1735448
  • 负责人:
  • 金额:
    $ 7.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

There is a 99.7% chance a magnitude 6.7 earthquake or larger will strike California within the next 30 years. Earthquakes are a mode of fault slip that cause seismic waves to be radiated into the Earth. Within earthquake cycle, however, faults may also undergo aseismic slip (or creep), which radiates no seismic wave. The occurrence of seismic versus aseismic slip depends on the initial frictional properties of the fault zone and their variation as a function of fault slip rate. Understanding, why, when, where and how creep rate varies on a fault is essential for quantifying earthquake potential on California's fault systems. The knowledge of spatial distribution of fault creep allows estimating location and size of future earthquakes, while the temporal variation of creep rate can be used to determine frictional properties of the fault zone. In this project we integrate measurement of ground surface deformation obtained from space-borne Interferometric Synthetic Aperture Radar and Global Positioning System with seismic observations through numerical and analytical models to constrain spatially and temporally variable creep rates along the Central and Southern San Andreas Faults. We will analyze large data sets of Synthetic Aperture Radar images acquired by several radar satellites spanning period 1992 - 2020, to generate maps of surface deformation time series at unprecedented resolution and accuracy. The results from this project will be used to investigate active crustal deformation and provide new insight into the its underlying mechanisms and dynamics, and allows better recognition and assessment of earthquake hazard and its associated risk in California. In particular, we will work to answer important questions: How much elastic vs. permanent strain occurs adjacent to the San Andreas Fault? Does this proportion change along the length of the fault? How do fault slip rates change and evolve over time? How do short-term geodetic measurements match with long-term geological measurements? How do earthquakes initiate? How do fault geometry, rheology, and history combine to determine the propagation, size, and location of earthquakes? What is the friction on a fault at the depths and conditions at which big earthquakes rupture? What role do fluids play in the generation of silent slip events? This project will also bring together young early career scientists, including one female, from American and British universities and will provide them with partial support. It will also provide valuable research experience for a graduate student. The results from this project will be incorporated in undergraduate teaching, including Physical Geology as well as graduate courses Crustal Deformation and Radar Remote Sensing, which both include numerous case examples from the San Andreas Fault.An improved knowledge of the spatially and temporally variable surface deformation field and the link to seismic and aseismic slips on faults are critically important for understanding active tectonics, mechanics of faulting and triggering large earthquakes. Unique to the San Andreas Fault is the combination of rich historic data sets, the recent deployment of EarthScope instrumentation, fault complexities and variety of natural transient phenomena, making it a natural laboratory for studying faulting processes. This 3-year research project is a collaboration between 3 early career scientists from 3 universities to advance understanding of aseismic faulting processes and underlying mechanisms in California. The study is inspired by seismic and geodetic observations of interseismic creep rate variations along the Central and Southern San Andreas Fault. Through this study, the full capacity of vast seismic, geodetic and geologic data sets provided through EarthScope will be explored. An advanced multitemporal interferometric synthetic aperture radar (InSAR) algorithm will be applied to large data sets of SAR images acquired by several radar satellites (e.g., ERS1,2, Envisat, ALOS, TerraSAR-X, CosmoSkyMed and Sentinel-A,B) spanning the period 1992 - 2020. In combination with Global Positioning System (GPS) observations, this effort provides observations of surface deformation time series at unprecedented resolution and accuracy. Time-dependent kinematic models will be applied to constrain spatiotemporal distribution of fault creep, integrating InSAR, Creepmeter, GPS and repeating earthquakes. Dynamic models informed by creep time series and lab measurements allow linking fault transient and long term behaviors to its frictional properties, evolution of effective normal stress and crustal lithology. Lastly, the link between rate changes on creeping segments and occurrence of major earthquakes on the adjacent locked sections will be investigated through static stress transferring.
在未来30年内,加州有99.7%的可能发生6.7级或更大的地震。地震是断层滑动的一种模式,它导致地震波辐射到地球中。但在地震周期内,断层也可能发生不辐射地震波的滑动(或蠕滑)。地震滑动与非地震滑动的发生取决于断裂带的初始摩擦性质及其随断层滑动速率的变化。了解断层上蠕变率变化的原因、时间、地点和方式,对于量化加州断层系统的地震潜力至关重要。断层蠕动的空间分布的知识可以估计未来地震的位置和大小,而蠕动速率的时间变化可以用来确定断层带的摩擦特性。在这个项目中,我们集成测量地面变形从星载干涉合成孔径雷达和全球定位系统与地震观测,通过数值和分析模型,以限制空间和时间可变蠕变率沿着中部和南部圣安德烈亚斯断层。我们将分析1992 - 2020年期间由几颗雷达卫星获得的合成孔径雷达图像的大数据集,以前所未有的分辨率和精度生成地表变形时间序列图。该项目的结果将用于研究活动地壳变形,并提供新的洞察其潜在的机制和动力学,并允许更好地识别和评估地震灾害及其相关的风险在加州。特别是,我们将努力回答一些重要的问题:圣安德烈亚斯断层附近发生了多大的弹性应变和永久应变?这个比例沿断层的长度沿着变化吗?断层滑动速率如何随时间变化和演化?短期大地测量如何与长期地质测量相匹配?地震是如何发生的?断层几何学、流变学和历史联合收割机如何结合起来确定地震的传播、规模和位置?在大地震破裂的深度和条件下,断层上的摩擦力是多少?流体在无声滑动事件的产生中起什么作用? 该项目还将汇集来自美国和英国大学的年轻的早期职业科学家,包括一名女性,并将为他们提供部分支持。它也将为研究生提供宝贵的研究经验。该项目的成果将被纳入本科教学,包括物理地质学以及研究生课程地壳变形和雷达遥感,其中都包括来自圣安德烈亚斯断层的大量案例。对时空变化的地表变形场以及断层上地震和地震滑动的联系的进一步了解对于理解活动构造至关重要,断裂和引发大地震的机制。独特的圣安德烈亚斯断层是丰富的历史数据集的组合,最近部署的EarthScope仪器,故障的复杂性和各种自然瞬态现象,使其成为研究断层过程的天然实验室。这个为期3年的研究项目是来自3所大学的3名早期职业科学家之间的合作,以促进对加州地震断层过程和潜在机制的理解。这项研究的灵感来自地震和大地测量观测的地震间蠕变率变化沿着中部和南部圣安德烈亚斯断层。通过这项研究,将充分利用EarthScope提供的大量地震、大地测量和地质数据集。一种先进的多时相干涉合成孔径雷达(干涉合成孔径雷达)算法将应用于由几颗雷达卫星(例如,ERS 1、2、Envisat、ALOS、TerraSAR-X、CosmoSkyMed和Sentinel-A、B),时间跨度为1992 - 2020年。这项工作与全球定位系统观测相结合,以前所未有的分辨率和精度提供了对地表变形时间序列的观测。将采用与时间有关的运动学模型,结合干涉合成孔径雷达、蠕变仪、全球定位系统和重复地震,限制断层蠕动的时空分布。由蠕变时间序列和实验室测量提供信息的动态模型可以将断层的瞬态和长期行为与其摩擦特性、有效正应力的演化和地壳岩性联系起来。最后,将通过静态应力传递研究蠕动段速率变化与相邻闭锁段发生大地震之间的联系。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Aseismic Transform Fault Slip at the Mendocino Triple Junction From Characteristically Repeating Earthquakes
  • DOI:
    10.1002/2017gl075899
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    K. Materna;T. Taira;R. Bürgmann
  • 通讯作者:
    K. Materna;T. Taira;R. Bürgmann
Spatiotemporal Variations of Surface Deformation, Shallow Creep Rate, and Slip Partitioning Between the San Andreas and Southern Calaveras Fault
圣安德烈亚斯断层和南卡拉维拉斯断层之间的表面变形、浅蠕变速率和滑移划分的时空变化
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Takaaki Taira其他文献

Takaaki Taira的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Takaaki Taira', 18)}}的其他基金

Collaborative Research: Imaging Stress Transients and Fault Zone Processes with Continuous Cross-Well Active Source Seismic Measurements at SAFOD
合作研究:通过 SAFOD 连续井间主动源地震测量对应力瞬变和断层带过程进行成像
  • 批准号:
    1251998
  • 财政年份:
    2014
  • 资助金额:
    $ 7.97万
  • 项目类别:
    Continuing Grant
Time-Lapse Monitoring for Detection of Transient Stress Changes in Geysers Geothermal Field
用于检测间歇泉地热场瞬态应力变化的延时监测
  • 批准号:
    1053211
  • 财政年份:
    2011
  • 资助金额:
    $ 7.97万
  • 项目类别:
    Standard Grant
An Investigation into Time-Dependent Fault Zone Properties at Seismogenic Depth on the San Andreas Fault near Parkfield
帕克菲尔德附近圣安德烈亚斯断层发震深度随时间变化的断层带特性研究
  • 批准号:
    0910322
  • 财政年份:
    2009
  • 资助金额:
    $ 7.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Bubble Trouble - Re-evaluating olivine melt inclusion barometry and trace-element geochemistry in the Cascades
合作研究:气泡麻烦 - 重新评估喀斯喀特橄榄石熔体包裹体气压和微量元素地球化学
  • 批准号:
    2342155
  • 财政年份:
    2024
  • 资助金额:
    $ 7.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Bubble Trouble - Re-evaluating olivine melt inclusion barometry and trace-element geochemistry in the Cascades
合作研究:气泡麻烦 - 重新评估喀斯喀特橄榄石熔体包裹体气压和微量元素地球化学
  • 批准号:
    2342156
  • 财政年份:
    2024
  • 资助金额:
    $ 7.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309310
  • 财政年份:
    2024
  • 资助金额:
    $ 7.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309308
  • 财政年份:
    2024
  • 资助金额:
    $ 7.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309309
  • 财政年份:
    2024
  • 资助金额:
    $ 7.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309311
  • 财政年份:
    2024
  • 资助金额:
    $ 7.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Evaluating Access: How a Multi-Institutional Network Promotes Equity and Cultural Change through Expanding Student Voice
合作研究:评估访问:多机构网络如何通过扩大学生的声音来促进公平和文化变革
  • 批准号:
    2309307
  • 财政年份:
    2024
  • 资助金额:
    $ 7.97万
  • 项目类别:
    Continuing Grant
Collaborative Research: Identifying and Evaluating Sites for Cosmic Explorer
合作研究:识别和评估宇宙探索者的地点
  • 批准号:
    2308989
  • 财政年份:
    2023
  • 资助金额:
    $ 7.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319535
  • 财政年份:
    2023
  • 资助金额:
    $ 7.97万
  • 项目类别:
    Standard Grant
Collaborative Research: DASS: Empirically Evaluating Data Fiduciary Privacy Laws
合作研究:DASS:实证评估数据信托隐私法
  • 批准号:
    2317115
  • 财政年份:
    2023
  • 资助金额:
    $ 7.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了