RII Track-4: Big Data and Massive Computation Approaches to Non-Equilibrium Dynamics of Strongly Correlated Materials
RII Track-4:强相关材料非平衡动力学的大数据和大规模计算方法
基本信息
- 批准号:1738698
- 负责人:
- 金额:$ 22.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical DescriptionIn some materials, the motion of elections through the material structure can be highly correlated, such that the electrons behave as cars move in heavy traffic; they cannot maneuver freely and their motions are strongly influenced by others. Materials that exhibit electron correlations also exhibit intriguing properties, such as metal-insulator transitions and unconventional superconductivity. However, whether electron correlation is the sole cause of these observed effects has perplexed scientists for decades. Overcoming this gap in knowledge could open up revolutionary opportunities for novel transistor and ultrafast device applications. In this project, the PI will use the supercomputing capabilities at Oak Ridge National Laboratory to tackle this challenging problem. Advanced simulations will be performed using tens of thousands of computing processors to model the behavior of electron correlation systems at the atomic scale. The research will generate more than 100 terabytes of data, requiring that Big Data techniques be employed to effectively process and analyze the huge data volume. The project includes efforts to broaden participation in the next-generation scientific computing workforce. The research topics address several of the 10 Big Ideas for Future NSF Investments and the Grand Challenges in Basic Energy Sciences, thereby also having potential impacts on U.S. science leadership and an energy-sustainable future.Technical DescriptionThe project's focus is on modeling quantum many-body phenomena driven away from equilibrium, with the goal of understanding correlated electrons' non-equilibrium behaviors revealed by time-domain spectroscopies at ultra-short time scales. Matrix diagonalization over 100 billion basis states will be tackled by matrix-free and dataflow computing. Equilibrium and non-equilibrium wavefunction-based quantum impurity solvers also will be developed. Non-linear time series regression will be further implemented to alleviate the computational cost for time-evolution calculations. The resulting codes will be employed to simulate ultrafast photon-based spectroscopies on vanadium dioxide (VO2), using effective single-band Hubbard model and multi-orbital Hamiltonian from Wannier projection. The role of structure transition will be addressed by restricted phonon calculations. These simulations could significantly advance the understanding of non-equilibrium phenomena and photo-induced phase transitions in VO2 and other strongly correlated transition-metal oxides. Open-source softwares also will be made freely available to the public for parallel cloud computing to further benefit the scientific community for numerical studies of non-equilibrium many-body problems.
非技术描述在某些材料中,电子通过物质结构的运动可以高度相关,以至于电子的行为就像汽车在繁忙的交通中移动一样;它们不能自由移动,它们的运动受到其他人的强烈影响。表现出电子关联的材料也表现出有趣的性质,例如金属-绝缘体转变和非传统的超导电性。然而,电子相关性是否是这些观察到的效应的唯一原因,几十年来一直困扰着科学家。克服这一知识差距可能会为新型晶体管和超快器件的应用开辟革命性的机会。在这个项目中,PI将利用橡树岭国家实验室的超级计算能力来解决这个具有挑战性的问题。将使用数以万计的计算处理器进行高级模拟,以模拟原子尺度上的电子关联系统的行为。这项研究将产生超过100 TB的数据,需要采用大数据技术来有效地处理和分析海量数据。该项目包括努力扩大对下一代科学计算劳动力的参与。研究主题涉及未来NSF投资的十大想法中的几个以及基础能源科学方面的重大挑战,从而也对美国的科学领导地位和能源可持续未来产生潜在影响。技术说明该项目的重点是对偏离平衡的量子多体现象进行建模,目的是了解相关电子在超短时间尺度上的时间域谱揭示的非平衡行为。超过1000亿个基态的矩阵对角化将通过无矩阵和数据流计算来解决。还将开发基于平衡和非平衡波函数的量子杂质解算器。将进一步实现非线性时间序列回归,以减轻时间演化计算的计算成本。所生成的程序将被用于模拟基于二氧化钒(VO2)的超快光子光谱,使用有效的单带Hubbard模型和来自Wannier投影的多轨道哈密顿量。结构转变的作用将通过限制声子计算来解决。这些模拟可以极大地促进对VO2和其他强相关过渡金属氧化物中的非平衡现象和光致相变的理解。开放源码软件还将免费提供给公众进行并行云计算,以进一步造福于科学界对非平衡多体问题的数值研究。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fluctuating Nature of Light-Enhanced d -Wave Superconductivity: A Time-Dependent Variational Non-Gaussian Exact Diagonalization Study
- DOI:10.1103/physrevx.11.041028
- 发表时间:2021-01
- 期刊:
- 影响因子:12.5
- 作者:Yao Wang;T. Shi;Cheng-Chien Chen
- 通讯作者:Yao Wang;T. Shi;Cheng-Chien Chen
Theory of time-resolved Raman scattering in correlated systems: Ultrafast engineering of spin dynamics and detection of thermalization
相关系统中的时间分辨拉曼散射理论:自旋动力学的超快工程和热化检测
- DOI:10.1103/physrevb.98.245106
- 发表时间:2018
- 期刊:
- 影响因子:1.7
- 作者:Wang, Yao;Devereaux, Thomas P.;Chen, Cheng-Chien
- 通讯作者:Chen, Cheng-Chien
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheng-Chien Chen其他文献
Maintenance of stable light emission in high power LEDs
- DOI:
10.1016/j.microrel.2012.02.002 - 发表时间:
2012-05-01 - 期刊:
- 影响因子:
- 作者:
Hung-Yu Chou;Cheng-Chien Chen;Tsung-Hsun Yang - 通讯作者:
Tsung-Hsun Yang
Cheng-Chien Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cheng-Chien Chen', 18)}}的其他基金
CAREER: Correlated Superconductors under Extreme Conditions
职业:极端条件下的相关超导体
- 批准号:
2142801 - 财政年份:2022
- 资助金额:
$ 22.21万 - 项目类别:
Continuing Grant
Travel Grant for NSF Frontera LRAC Award: Technical Coordination with TACC and Attendance to a PI Meeting
NSF Frontera LRAC 奖旅费资助:与 TACC 进行技术协调并参加 PI 会议
- 批准号:
2031563 - 财政年份:2020
- 资助金额:
$ 22.21万 - 项目类别:
Standard Grant
相似海外基金
Developing Novel Bayesian Track Before Detect Approaches for Maritime Big Data Challenges
在检测方法之前开发新颖的贝叶斯轨迹应对海事大数据挑战
- 批准号:
2889729 - 财政年份:2023
- 资助金额:
$ 22.21万 - 项目类别:
Studentship
Equipment: MRI Track-I: Acquisition of CyBR: Cyber Infrastructure for Big Data Research Critical for Alaska
设备: MRI Track-I:收购 CyBR:对阿拉斯加至关重要的大数据研究网络基础设施
- 批准号:
2320196 - 财政年份:2023
- 资助金额:
$ 22.21万 - 项目类别:
Standard Grant
IRES Track I: At the Frontier of Big Climate, Disaster Capitalism, and Endangered Cultural Heritage in Barbuda, Lesser Antilles
IRES 第一轨:位于小安的列斯群岛巴布达的大气候、灾难资本主义和濒危文化遗产的前沿
- 批准号:
2153608 - 财政年份:2022
- 资助金额:
$ 22.21万 - 项目类别:
Standard Grant
Conference: Track 1: The 2022 Big Ten Womens Workshop
会议:第一场:2022 年十大女性研讨会
- 批准号:
2227147 - 财政年份:2022
- 资助金额:
$ 22.21万 - 项目类别:
Standard Grant
Collaborative Research: IRES Track 1: International Research Experience for Students in Big Data Applications in Energy and Related Infrastructure
合作研究:IRES Track 1:能源及相关基础设施大数据应用学生的国际研究经验
- 批准号:
2208801 - 财政年份:2021
- 资助金额:
$ 22.21万 - 项目类别:
Standard Grant
RII Track-2 FEC: Precise Regional Forecasting via Intelligent and Rapid Harnessing of National Scale Hydrometeorological Big Data
RII Track-2 FEC:通过智能快速利用国家规模水文气象大数据进行精确区域预报
- 批准号:
2019511 - 财政年份:2020
- 资助金额:
$ 22.21万 - 项目类别:
Cooperative Agreement
Collaborative Research: IRES Track 1: International Research Experience for Students in Big Data Applications in Energy and Related Infrastructure
合作研究:IRES Track 1:能源及相关基础设施大数据应用学生的国际研究经验
- 批准号:
1952490 - 财政年份:2020
- 资助金额:
$ 22.21万 - 项目类别:
Standard Grant
NNA Track 1: Collaborative Research: The Permafrost Discovery Gateway: Navigating the new Arctic tundra through Big Data, artificial intelligence, and cyberinfrastructure
NNA 轨道 1:协作研究:永久冻土发现网关:通过大数据、人工智能和网络基础设施导航新的北极苔原
- 批准号:
2052107 - 财政年份:2020
- 资助金额:
$ 22.21万 - 项目类别:
Standard Grant
Collaborative Research: IRES Track 1: International Research Experience for Students in Big Data Applications in Energy and Related Infrastructure
合作研究:IRES Track 1:能源及相关基础设施大数据应用学生的国际研究经验
- 批准号:
1952497 - 财政年份:2020
- 资助金额:
$ 22.21万 - 项目类别:
Standard Grant
RII Track-2 FEC: Leveraging Big Data to Improve Prediction of Tick-Borne Disease Patterns and Dynamics
RII Track-2 FEC:利用大数据改进对蜱传疾病模式和动态的预测
- 批准号:
2019609 - 财政年份:2020
- 资助金额:
$ 22.21万 - 项目类别:
Cooperative Agreement