Collaborative Research: NSCI: SI2-SSE: Time Stepping and Exchange-Correlation Modules for Massively Parallel Real-Time Time-Dependent DFT
合作研究:NSCI:SI2-SSE:大规模并行实时瞬态 DFT 的时间步进和交换相关模块
基本信息
- 批准号:1740219
- 负责人:
- 金额:$ 24.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in high-performance (HPC) computing allow simulations of quantum dynamics of electrons in complex materials, and such simulations are central to advancing various medical and semiconductor technologies, ranging from proton beam cancer therapy to fabricating faster and smaller electronics. At the same time, the increasing scale and complexity of modern high-performance computers exposed a need for development of scientific software that is tailored for computers with large numbers of processors so that simulations can efficiently take advantage of increasing computing power. This project advances scientific software for simulating quantum dynamics of electrons for high-performance computers with tens and hundreds of thousands of processors that are becoming widely available. This work builds the HPC academic research community around the proposed software by extending the existing software available for quantum dynamics simulation with better user-friendly features and analysis techniques. In the process, this project engages graduate students and early-career researchers to use and further develop scientific software for high-performance computers in general. Additionally, a summer school for hands-on training will be conducted. The open source software will be made available to the community on Github (public repository). Real-time propagation in time-dependent density functional theory (RT-TDDFT) is becoming increasingly popular for studying non-equilibrium electronic dynamics both in the linear regime and beyond linear response. RT-TDDFT can be combined to study coupled dynamics of quantum-mechanical electrons with the movement of classical ions within Ehrenfest dynamics. In spite of its great promise, RT-TDDFT is computationally very demanding, especially for studying large condensed-matter systems. The large cost arises from small time steps of numerical integration of the electron dynamics, rendering accurate (hybrid) exchange-correlation (XC) functionals unfeasible, despite their clear benefits. In addition, while modern high-performance computing (HPC) helps tackling great scientific questions, massively parallel, hybrid-paradigm architectures present new challenges. Theoretical and algorithmic methods need to be developed in order to take full advantage of modern massively parallel HPC. This work builds new modules for the RT-TDDFT software component of the Qb@ll code, that enables a large community of researchers to perform advanced first-principles simulations of non-equilibrium electron dynamics in complex condensed-phase systems, using massively parallel HPC. This is done through developing (1) new modules for numerical integration that propagate the underlying non-linear partial differential equations in real time with high efficiency and accuracy, and (2) new modules for improved approximations of the underlying electronic structure, using a modern meta-generalized-gradient XC functional. Furthermore, the work builds the HPC academic research community around RT-TDDFT within the Qb@ll code through (1) development of user-friendly features that interface Qb@ll with other code and analysis techniques and (2) engagement of early-career scientists by incorporating hands-on training on RT-TDDFT using the Qb@ll code in TDDFT summer school.This project is supported by the Office of Advanced Cyberinfrastructure in the Directorate for Computer and Information Science and Engineering, the Materials Research Division and Chemistry Division in the Directorate of Mathematical and Physical Sciences.
高性能(HPC)计算的最新进展可以模拟复杂材料中电子的量子动力学,这种模拟对于推进各种医疗和半导体技术至关重要,从质子束癌症治疗到制造速度更快、更小的电子产品。与此同时,现代高性能计算机日益增长的规模和复杂性暴露了开发科学软件的需求,这种软件是为拥有大量处理器的计算机量身定做的,以便模拟可以有效地利用日益增长的计算能力。这个项目为拥有数万和数十万处理器的高性能计算机开发了用于模拟电子量子动力学的科学软件,这些计算机正在变得越来越普遍。这项工作围绕拟议的软件建立了HPC学术研究社区,通过扩展现有的可用于量子动力学模拟的软件,使其具有更好的用户友好特性和分析技术。在这个过程中,这个项目邀请研究生和职业生涯早期的研究人员使用并进一步开发一般高性能计算机的科学软件。此外,还将举办暑期实习班,进行动手培训。开源软件将在Github(公共存储库)上向社区提供。含时密度泛函理论中的实时传播理论(RT-TDDFT)无论是在线性区域还是在线性响应之外的非平衡电子动力学研究中都变得越来越流行。RT-TDDFT可以结合在Ehrenfest动力学中研究量子力学电子与经典离子运动的耦合动力学。尽管RT-TDDFT有着巨大的前景,但它在计算上要求非常高,特别是对于研究大型凝聚态系统。巨大的成本来自电子动力学数值积分的小时间步长,使得精确的(混合)交换关联(XC)泛函不可行,尽管它们有明显的好处。此外,虽然现代高性能计算(HPC)有助于解决重大科学问题,但大规模并行、混合范例架构提出了新的挑战。为了充分利用现代大规模并行高性能计算的优势,需要发展理论和算法方法。这项工作为QB@ll程序的RT-TDDFT软件组件建立了新的模块,使大量研究人员能够使用大规模并行HPC对复杂凝聚相系统中的非平衡电子动力学进行高级第一性原理模拟。这是通过开发(1)高效率和高精度地实时传播基本非线性偏微分方程组的新的数值积分模块和(2)使用现代亚广义梯度XC泛函改进基本电子结构的近似的新模块来实现的。此外,这项工作通过(1)开发界面友好的功能,将QB@ll与其他代码和分析技术连接起来,以及(2)通过在TDDFT暑期学校使用QB@ll代码纳入关于RT-TDDFT的实践培训,建立了围绕QB@ll代码的RT-TDDFT的HPC学术研究社区。该项目得到了计算机和信息科学与工程局的高级数字基础设施办公室、数学和物理科学局的材料研究司和化学司的支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
First-principles simulation of light-ion microscopy of graphene
- DOI:10.1088/2053-1583/ac8e7e
- 发表时间:2022-01
- 期刊:
- 影响因子:5.5
- 作者:A. Kononov;Alexandra Olmstead;A. Baczewski;A. Schleife
- 通讯作者:A. Kononov;Alexandra Olmstead;A. Baczewski;A. Schleife
Electron cascades and secondary electron emission in graphene under energetic ion irradiation
高能离子辐照下石墨烯中的电子级联和二次电子发射
- DOI:10.1103/physrevb.103.224306
- 发表时间:2021
- 期刊:
- 影响因子:3.7
- 作者:Vázquez, Henrique;Kononov, Alina;Kyritsakis, Andreas;Medvedev, Nikita;Schleife, André;Djurabekova, Flyura
- 通讯作者:Djurabekova, Flyura
Pushing the frontiers of modeling excited electronic states and dynamics to accelerate materials engineering and design
- DOI:10.1016/j.commatsci.2019.01.004
- 发表时间:2019-04
- 期刊:
- 影响因子:3.3
- 作者:Kisung Kang;A. Kononov;Cheng-Wei Lee;J. Leveillee;Ethan P. Shapera;Xiao Zhang;A. Schleife
- 通讯作者:Kisung Kang;A. Kononov;Cheng-Wei Lee;J. Leveillee;Ethan P. Shapera;Xiao Zhang;A. Schleife
Anomalous Stopping and Charge Transfer in Proton-Irradiated Graphene
- DOI:10.1021/acs.nanolett.1c01416
- 发表时间:2021-05-25
- 期刊:
- 影响因子:10.8
- 作者:Kononov, Alina;Schleife, Andre
- 通讯作者:Schleife, Andre
Pre-equilibrium stopping and charge capture in proton-irradiated aluminum sheets
- DOI:10.1103/physrevb.102.165401
- 发表时间:2020-06
- 期刊:
- 影响因子:3.7
- 作者:A. Kononov;A. Schleife
- 通讯作者:A. Kononov;A. Schleife
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andre Schleife其他文献
Andre Schleife的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andre Schleife', 18)}}的其他基金
Travel: 2023 African School for Electronic Structure Methods and Applications (ASESMA2023)
旅行:2023 年非洲电子结构方法与应用学院 (ASESMA2023)
- 批准号:
2326558 - 财政年份:2023
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: Elements: GPU-accelerated First-Principles Simulation of Exciton Dynamics in Complex Systems
合作研究:要素:复杂系统中激子动力学的 GPU 加速第一性原理模拟
- 批准号:
2209857 - 财政年份:2022
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
CAREER: Dielectric Screening - From First Principles to Mesoscale
职业:介电屏蔽 - 从第一原理到介观尺度
- 批准号:
1555153 - 财政年份:2016
- 资助金额:
$ 24.99万 - 项目类别:
Continuing Grant
Understanding Excitons for Lead-Free Perovskite Photovoltaics
了解无铅钙钛矿光伏的激子
- 批准号:
1437230 - 财政年份:2014
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
- 批准号:
2219975 - 财政年份:2021
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Software: NSCI : Computational and data innovation implementing a national community hydrologic modeling framework for scientific discovery
合作研究:框架:软件:NSCI:计算和数据创新实施国家社区水文建模框架以促进科学发现
- 批准号:
2054506 - 财政年份:2020
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: NSCI Framework: Software: SCALE-MS - Scalable Adaptive Large Ensembles of Molecular Simulations
合作研究:NSCI 框架:软件:SCALE-MS - 可扩展自适应大型分子模拟集成
- 批准号:
1835720 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: Elements: Software: NSCI: Chrono-An open-source simulation platform for computational dynamics problems
合作研究:要素:软件:NSCI:Chrono-计算动力学问题的开源仿真平台
- 批准号:
1835727 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: NSCI Framework: Software: SCALE-MS - Scalable Adaptive Large Ensembles of Molecular Simulations
合作研究:NSCI 框架:软件:SCALE-MS - 可扩展自适应大型分子模拟集成
- 批准号:
1835607 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
- 批准号:
1835661 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
- 批准号:
1835566 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
- 批准号:
1835791 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: NSCI Framework: Software: SCALE-MS - Scalable Adaptive Large Ensembles of Molecular Simulations
合作研究:NSCI 框架:软件:SCALE-MS - 可扩展自适应大型分子模拟集成
- 批准号:
1835449 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant
Collaborative Research: Framework: Data: NSCI: HDR: GeoSCIFramework: Scalable Real-Time Streaming Analytics and Machine Learning for Geoscience and Hazards Research
协作研究:框架:数据:NSCI:HDR:GeoSCIFramework:用于地球科学和灾害研究的可扩展实时流分析和机器学习
- 批准号:
1835692 - 财政年份:2019
- 资助金额:
$ 24.99万 - 项目类别:
Standard Grant