SI2-SSE: MetPy - A Python GEMPAK Replacement for Meteorological Data Analysis

SI2-SSE:MetPy - 用于气象数据分析的 Python GEMPAK 替代品

基本信息

  • 批准号:
    1740315
  • 负责人:
  • 金额:
    $ 49.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2021-08-31
  • 项目状态:
    已结题

项目摘要

The MetPy project aims to make atmospheric science research and teaching easier and more reproducible by providing a set of well-tested and modern software tools. Meteorologists require many specialized calculations and maps in order to understand the weather and make reliable predictions. The tools they use must provide correct results, since lives and property depend on accurate forecasts and research. This project will port the bulk of the functionality from a widely used and trusted -- but aging and minimally supported -- software program called GEMPAK (the GEneral Meteorological PAcKage) into MetPy, developed using the Python programming language, and with a well-designed, new software architecture. Python has been selected as the language of choice because it has become very popular in many scientific communities. MetPy will be the meteorological community's entry into this growing scientific software ecosystem. In addition to making GEMPAK's functionality available in MetPy, this project will implement a better user-interface, which will help students and researchers get started more easily. The software team will use software development best practices in its development of MetPy, and ensure that it can work with all common meteorological data sources. Every relevant aspect of MetPy will be documented in an easy to digest way on the MetPy project webpage. The development team will work with university instructors to help revise their course materials to integrate MetPy. In addition, the team will teach MetPy and Python training workshops each year, allowing university professors, students, and professionals to get hands-on training on how to do their research in a faster and more robust way. This project seeks to fill a need within the atmospheric science community by bringing key functional elements of a foundational software program, GEMPAK, to the innovation-rich Python ecosystem. By devoting software development resources to increasing the number of data types and file formats MetPy can work with, improving the underlying data model, and reaching feature parity with GEMPAK, MetPy can be positioned as a community-supported replacement for the older package. This effort leverages the entire Python ecosystem, and supports the movement (already well under way) of the atmospheric science community to Python-driven reproducible workflows. This transition will provide a number of community benefits. By bringing needed functionality from GEMPAK to the Python ecosystem, this project will allow atmospheric scientists to: simplify the process of exploratory analysis, have a cross-platform toolchain that can be carried from the classroom to the workforce, simplify the research workflow to make science easier and more reproducible, provide a tested library of domain-specific calculations with literature references, and create publication-quality data visualizations. Educators and researchers will be able to replace their use of legacy software, which is no longer being developed and is increasingly hard to maintain, with a modern toolkit that allows increased flexibility and reproducibility within atmospheric science research. Sustainability of the atmospheric science software workflow will be enhanced by the inclusion of modern automated software build-and-test tools, robust community-supported documentation and learning materials, and the ability to quickly incorporate new sources of environmental data. Finally, modernizing the atmospheric science toolchain opens the door to the use of innovations like web-based tools (Jupyter notebooks, for example) that would be difficult or impossible to take advantage of when using legacy software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
MetPy项目旨在通过提供一套经过良好测试的现代软件工具,使大气科学研究和教学更容易,更具可重复性。气象学家需要许多专门的计算和地图,以了解天气和作出可靠的预测。他们使用的工具必须提供正确的结果,因为生命和财产取决于准确的预测和研究。该项目将把广泛使用和值得信赖的大部分功能-但老化和最低限度的支持-称为GEMPAK(通用气象PAcKage)的软件程序移植到MetPy中,使用Python编程语言开发,并具有精心设计的新软件架构。Python被选为首选语言,因为它在许多科学社区中非常流行。MetPy将成为气象界进入这个不断增长的科学软件生态系统的入口。除了在MetPy中提供GEMPAK的功能外,该项目还将实现更好的用户界面,这将有助于学生和研究人员更容易地开始。软件团队将在MetPy的开发中使用软件开发最佳实践,并确保它可以与所有常见的气象数据源一起工作。MetPy的每个相关方面都将以易于理解的方式记录在MetPy项目网页上。开发团队将与大学教师合作,帮助修改他们的课程材料,以整合MetPy。此外,该团队每年还将教授MetPy和Python培训研讨会,让大学教授、学生和专业人士获得如何以更快、更强大的方式进行研究的实践培训。该项目旨在通过将基础软件程序GEMPAK的关键功能元素引入创新丰富的Python生态系统来满足大气科学界的需求。通过将软件开发资源用于增加MetPy可以使用的数据类型和文件格式的数量,改进底层数据模型,并与GEMPAK实现功能对等,MetPy可以定位为社区支持的旧软件包的替代品。这项工作利用了整个Python生态系统,并支持大气科学社区向Python驱动的可重复工作流程的转变(已经在进行中)。这一转变将为社区带来许多好处。通过将GEMPAK所需的功能引入Python生态系统,该项目将使大气科学家能够:简化探索性分析的过程,拥有可以从教室带到工作场所的跨平台工具链,简化研究工作流程,使科学更容易和更可重复,提供经过测试的特定领域计算库和文献参考,并创建出版质量的数据可视化。教育工作者和研究人员将能够使用现代化的工具包来取代不再开发且越来越难以维护的传统软件,从而提高大气科学研究的灵活性和可重复性。大气科学软件工作流程的可持续性将通过纳入现代自动化软件构建和测试工具、强大的社区支持文档和学习材料以及快速纳入新的环境数据来源的能力而得到加强。最后,大气科学工具链的现代化为使用基于网络的工具(例如Google笔记本)等创新打开了大门,这些工具在使用传统软件时很难或不可能利用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MetPy: A Meteorological Python Library for Data Analysis and Visualization
MetPy:用于数据分析和可视化的气象 Python 库
  • DOI:
    10.1175/bams-d-21-0125.1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8
  • 作者:
    May, Ryan M.;Goebbert, Kevin H.;Thielen, Jonathan E.;Leeman, John R.;Camron, M. Drew;Bruick, Zachary;Bruning, Eric C.;Manser, Russell P.;Arms, Sean C.;Marsh, Patrick T.
  • 通讯作者:
    Marsh, Patrick T.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan May其他文献

matplotlib/matplotlib v3.1.3
matplotlib/matplotlib v3.1.3
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas A Caswell;Michael Droettboom;Antony Lee;John Hunter;Eric Firing;David Stansby;J. Klymak;Tim Hoffmann;Elliott Sales de Andrade;Nelle Varoquaux;Jens Hedegaard Nielsen;Benjamin Root;Phil Elson;Ryan May;Darren Dale;Jae;Jouni K. Seppänen;Damon McDougall;Andrew D. Straw;Paul Hobson;Christoph Gohlke;Tony S Yu;Eric Ma;Adrien F. Vincent;Steven Silvester;Charlie Moad;Nikita Kniazev;P. Ivanov;Elan Ernest;Jan Katins
  • 通讯作者:
    Jan Katins
LOCAL CLIMATOLOGICAL DATA
当地气候数据
  • DOI:
    10.1111/j.1600-0447.1947.tb03912.x
  • 发表时间:
    1946
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Thomas A Caswell;Michael Droettboom;Antony Lee;Elliott Sales de Andrade;John Hunter;Tim Hoffmann;Eric Firing;Jody Klymak;David Stansby;Nelle Varoquaux;Jens Hedegaard Nielsen;Benjamin Root;Ryan May;Phil Elson;Jouni K. Seppänen;Darren Dale;Jae;Damon McDougall;Andrew D. Straw;Paul Hobson;Christoph Gohlke;Tony S Yu;Eric Ma;Adrien F. Vincent;Hannah;Steven Silvester;Charlie Moad;Nikita Kniazev;Elan Ernest;P. Ivanov
  • 通讯作者:
    P. Ivanov
matplotlib/matplotlib: REL: v3.2.2
matplotlib/matplotlib:相对:v3.2.2
  • DOI:
    10.5281/zenodo.3898017
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Thomas A Caswell;Michael Droettboom;Antony Lee;John Hunter;Eric Firing;Elliott Sales de Andrade;Tim Hoffmann;David Stansby;Jody Klymak;Nelle Varoquaux;Jens Hedegaard Nielsen;Benjamin Root;Phil Elson;Ryan May;Darren Dale;Jae;Jouni K. Seppänen;Damon McDougall;Andrew D. Straw;Paul Hobson;Christoph Gohlke;Tony S Yu;Eric Ma;Adrien F. Vincent;Steven Silvester;Charlie Moad;Nikita Kniazev;Hannah;Elan Ernest
  • 通讯作者:
    Elan Ernest
matplotlib/matplotlib: REL: v3.3.4
matplotlib/matplotlib:相对:v3.3.4
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas A Caswell;Michael Droettboom;Antony Lee;Elliott Sales de Andrade;John Hunter;Eric Firing;Tim Hoffmann;Jody Klymak;David Stansby;Nelle Varoquaux;Jens Hedegaard Nielsen;Benjamin Root;Ryan May;Phil Elson;Jouni K. Seppänen;Darren Dale;Jae;Damon McDougall;Andrew D. Straw;Paul Hobson;Christoph Gohlke;Tony S Yu;Eric Ma;Adrien F. Vincent;Hannah;Steven Silvester;Charlie Moad;Nikita Kniazev;Elan Ernest;P. Ivanov
  • 通讯作者:
    P. Ivanov
matplotlib: matplotlib v1.5.1
matplotlib:matplotlib v1.5.1
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Michael Droettboom;Thomas A Caswell;Eric Firing;Damon McDougall;P. Ivanov;M. Giuca;J. K. Seppänen;J. Evans;Cimarron;Steven Silvester;Jens Nielsen;Charles W. Moad;mdehoon;Paul Hobson;Jae;A. Straw;John D. Hunter;Ian Thomas;Federico Ariza;Thomas Hisch;Jeff Whitaker;Phil Elson;Benjamin Root;Eric J. Ma;Tony S Yu;D. Dale;Nelle Varoquaux;Christoph Gohlke;Peter Würtz;Ryan May
  • 通讯作者:
    Ryan May

Ryan May的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan May', 18)}}的其他基金

Elements: Scaling MetPy to Big Data Workflows in Meteorology and Climate Science
要素:将 MetPy 扩展到气象学和气候科学中的大数据工作流程
  • 批准号:
    2103682
  • 财政年份:
    2021
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Collaborative Proposal: EarthCube Integration: Pangeo: An Open Source Big Data Climate Science Platform
合作提案:EarthCube 集成:Pangeo:开源大数据气候科学平台
  • 批准号:
    1740633
  • 财政年份:
    2017
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant

相似国自然基金

化脓性链球菌分泌性酯酶Sse抑制LC3相关吞噬促其侵袭的机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
太阳能电池Cu2ZnSn(SSe)4/CdS界面过渡层结构模拟及缺陷态消除研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
掺杂实现Cu2ZnSn(SSe)4吸收层表层稳定弱n型特性的第一性原理研究
  • 批准号:
    12004100
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
基于SSE的航空信息系统信息安全保障评价指标体系的研究
  • 批准号:
    60776808
  • 批准年份:
    2007
  • 资助金额:
    19.0 万元
  • 项目类别:
    联合基金项目

相似海外基金

異常検知手法と大気ノイズ補正を併用したInSAR時系列による未知のSSE検出手法の確立
利用异常检测方法和大气噪声校正建立利用InSAR时间序列的未知SSE检测方法
  • 批准号:
    24K07168
  • 财政年份:
    2024
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on vibration theory for defect detection by acoustic excitation using SSE analysis
基于SSE分析的声激励缺陷检测振动理论研究
  • 批准号:
    23K03995
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on defect detection by spatial spectral entropy (SSE) and healthy part evaluation for noncontact acoustic inspection
非接触声学检测中空间谱熵(SSE)缺陷检测和健康部位评估研究
  • 批准号:
    19K04414
  • 财政年份:
    2019
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Numerical simulations of earthquake and SSE triggering by dynamic stress changes
动态应力变化引发地震和SSE的数值模拟
  • 批准号:
    18K03775
  • 财政年份:
    2018
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSCI: SI2-SSE: An Extensible Model to Support Scalable Checkpoint-Restart for DMTCP Across Multiple Disciplines
NSCI:SI2-SSE:支持跨多个学科的 DMTCP 可扩展检查点重启的可扩展模型
  • 批准号:
    1740218
  • 财政年份:
    2018
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
SI2-SSE: GenApp - A Transformative Generalized Application Cyberinfrastructure
SI2-SSE:GenApp - 变革性通用应用程序网络基础设施
  • 批准号:
    1912444
  • 财政年份:
    2018
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
SI2-SSE: A parallel computing framework for large-scale real-space and real-time TDDFT excited-states calculations
SI2-SSE:大规模实空间和实时 TDDFT 激发态计算的并行计算框架
  • 批准号:
    1739423
  • 财政年份:
    2018
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Collaborative Research: SI2-SSE: WRENCH: A Simulation Workbench for Scientific Worflow Users, Developers, and Researchers
协作研究:SI2-SSE:WRENCH:面向科学 Worflow 用户、开发人员和研究人员的模拟工作台
  • 批准号:
    1642369
  • 财政年份:
    2017
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
SI2-SSE: Entangled Quantum Dynamics in Closed and Open Systems, an Open Source Software Package for Quantum Simulator Development and Exploration of Synthetic Quantum Matter
SI2-SSE:封闭和开放系统中的纠缠量子动力学,用于量子模拟器开发和合成量子物质探索的开源软件包
  • 批准号:
    1740130
  • 财政年份:
    2017
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
SI2-SSE: Highly Efficient and Scalable Software for Coarse-Grained Molecular Dynamics
SI2-SSE:高效且可扩展的粗粒度分子动力学软件
  • 批准号:
    1740211
  • 财政年份:
    2017
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了