Collaborative Research: TRIPODS Institute for Optimization and Learning

合作研究:TRIPODS 优化与学习研究所

基本信息

  • 批准号:
    1740796
  • 负责人:
  • 金额:
    $ 89.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-01-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

This Phase I project forms an NSF TRIPODS Institute, based at Lehigh University and in collaboration with Stony Brook and Northwestern Universities, with a focus on new advances in tools for machine learning applications. A critical component for machine learning is mathematical optimization, where one uses historical data to train tools for making future predictions and decisions. Traditionally, optimization techniques for machine learning have focused on simplified models and algorithms. However, recent revolutionary leaps in the successes of machine learning tools---e.g., for image and speech recognition---have in many cases been made possible by a shift toward using more complicated techniques, often involving deep neural networks. Continued advances in the use of such techniques require combined efforts between statisticians, computer scientists, and applied mathematicians to develop more sophisticated models and algorithms along with more comprehensive theoretical guarantees that support their use. In addition to its research goals, the institute trains Ph.D. students and postdoctoral fellows in statistics, computer science, and applied mathematics, and hosts interdisciplinary workshops and Winter/Summer schools. The research efforts in Phase I are on the analysis of nonconvex machine learning models, the design of optimization algorithms for training them, and on the development of nonparametric models and associated algorithms. The focus is on deep neural networks (DNNs), mostly in general, but also with respect to specific architectures of interest. The institute's research efforts emphasize the need to develop connections between state-of-the-art approaches for training DNNs and statistical performance guarantees (e.g., on generalization errors), which are currently not well understood. Optimization algorithms development centers on second-order-derivative-type techniques, including (Hessian-free) Newton, quasi-Newton, Gauss-Newton, and their limited memory variants. Recent advances have been made in the design of such methods; the PIs' work builds upon these efforts with their broad expertise in the design and implementation (including in parallel and distributed computing environments) of such methods. The development of nonparametric models promises to free machine learning approaches from restrictions imposed by large numbers of user-defined parameters (e.g., defining a network structure or learning rate of an optimization algorithm). Such models could lead to great advances in machine learning, and the institute's work in this area also draws on the PIs expertise in derivative-free optimization methods, which are needed for training in nonparametric settings.In this TRIPODS institute, the PIs approach all of these research directions with a unified perspective in the three disciplines of statistics, computer science, and applied mathematics. Indeed, as machine learning draws so heavily from these areas, future progress requires close collaborations between optimization experts, learning theorists, and statisticians---communities of researchers that, as yet, have tended to operate separately with differing terminology and publication venues. With an emphasis on deep learning, this institute aims to foster intercollegiate and interdisciplinary collaborations that overcome these hindrances.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个第一阶段项目形成了一个NSF TRIPODS研究所,位于利哈伊大学,与斯托尼布鲁克和西北大学合作,重点是机器学习应用工具的新进展。 机器学习的一个关键组成部分是数学优化,其中使用历史数据来训练工具,以进行未来的预测和决策。 传统上,机器学习的优化技术主要集中在简化的模型和算法上。 然而,最近机器学习工具的成功革命性飞跃-例如,在许多情况下,通过转向使用更复杂的技术(通常涉及深度神经网络),图像和语音识别成为可能。 这些技术的持续发展需要统计学家、计算机科学家和应用数学家共同努力,开发更复杂的模型和算法,沿着提供更全面的理论保证,以支持其使用。除了研究目标外,该研究所还培养博士。在统计学,计算机科学和应用数学的学生和博士后研究员,并举办跨学科研讨会和冬季/夏季学校。 第一阶段的研究工作是分析非凸机器学习模型,设计用于训练它们的优化算法,以及开发非参数模型和相关算法。 重点是深度神经网络(DNN),主要是一般性的,但也涉及感兴趣的特定架构。 该研究所的研究工作强调需要在最先进的DNN训练方法和统计性能保证(例如,关于泛化错误),目前还没有很好地理解。优化算法的发展集中在二阶导数类型的技术,包括(无海森)牛顿,拟牛顿,高斯牛顿,以及它们的有限内存变体。 在设计这些方法方面取得了最新进展; PI的工作建立在这些努力的基础上,他们在设计和实现(包括并行和分布式计算环境)这些方法方面拥有广泛的专业知识。 非参数模型的发展有望将机器学习方法从大量用户定义的参数(例如,定义网络结构或优化算法的学习速率)。 这些模型可能会导致机器学习的巨大进步,该研究所在这一领域的工作也借鉴了PI在无导数优化方法方面的专业知识,这是非参数设置培训所需的。在这个TRIPODS研究所,PI在统计学,计算机科学和应用数学三个学科中以统一的视角处理所有这些研究方向。 事实上,由于机器学习从这些领域中汲取了如此多的知识,未来的进步需要优化专家、学习理论家和统计学家之间的密切合作--这些研究人员社区迄今为止往往使用不同的术语和出版地点独立运作。 该研究所以深度学习为重点,旨在促进跨学院和跨学科的合作,克服这些障碍。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Doubly Adaptive Scaled Algorithm for Machine Learning using 2nd Order Information
使用二阶信息进行机器学习的双自适应缩放算法
Worst-case complexity of an SQP method for nonlinear equality constrained stochastic optimization
  • DOI:
    10.1007/s10107-023-01981-1
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Frank E. Curtis;Michael O'Neill;Daniel P. Robinson
  • 通讯作者:
    Frank E. Curtis;Michael O'Neill;Daniel P. Robinson
Optimal Generalized Decision Trees via Integer Programming
  • DOI:
  • 发表时间:
    2016-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Menickelly;O. Günlük;J. Kalagnanam;K. Scheinberg
  • 通讯作者:
    M. Menickelly;O. Günlük;J. Kalagnanam;K. Scheinberg
Concise complexity analyses for trust region methods
  • DOI:
    10.1007/s11590-018-1286-2
  • 发表时间:
    2018-12-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Curtis, Frank E.;Lubberts, Zachary;Robinson, Daniel P.
  • 通讯作者:
    Robinson, Daniel P.
Randomized sketch descent methods for non-separable linearly constrained optimization
用于不可分离线性约束优化的随机草图下降法
  • DOI:
    10.1093/imanum/draa018
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Necoara, Ion;Takáč, Martin
  • 通讯作者:
    Takáč, Martin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frank Curtis其他文献

Numerical semigroups of maximal and almost maximal length
  • DOI:
    10.1007/bf02573421
  • 发表时间:
    1991-12-01
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    William C. Brown;Frank Curtis
  • 通讯作者:
    Frank Curtis

Frank Curtis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frank Curtis', 18)}}的其他基金

Collaborative Research: AF: Small: A Unified Framework for Analyzing Adaptive Stochastic Optimization Methods Based on Probabilistic Oracles
合作研究:AF:Small:基于概率预言的自适应随机优化方法分析统一框架
  • 批准号:
    2139735
  • 财政年份:
    2022
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Adaptive Optimization of Stochastic and Noisy Function
合作研究:AF:小:随机和噪声函数的自适应优化
  • 批准号:
    2008484
  • 财政年份:
    2020
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Standard Grant
Collaborative Research: SSMCDAT2020: Solid-State and Materials Chemistry Data Science Hackathon
合作研究:SSMCDAT2020:固态和材料化学数据科学黑客马拉松
  • 批准号:
    1938729
  • 财政年份:
    2019
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Standard Grant
AF: Small: New classes of optimization methods for nonconvex large scale machine learning models.
AF:小型:非凸大规模机器学习模型的新型优化方法。
  • 批准号:
    1618717
  • 财政年份:
    2016
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Standard Grant
Nonlinear Optimization Algorithms for Large-Scale and Nonsmooth Applications
适用于大规模和非光滑应用的非线性优化算法
  • 批准号:
    1016291
  • 财政年份:
    2010
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
  • 批准号:
    1934813
  • 财政年份:
    2019
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Standard Grant
HDR TRIPODS: Collaborative Research: Foundations of Greater Data Science
HDR TRIPODS:协作研究:大数据科学的基础
  • 批准号:
    1934962
  • 财政年份:
    2019
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
  • 批准号:
    1934931
  • 财政年份:
    2019
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Standard Grant
HDR TRIPODS: Collaborative Research: Institute for Data, Econometrics, Algorithms and Learning
HDR TRIPODS:协作研究:数据、计量经济学、算法和学习研究所
  • 批准号:
    1934843
  • 财政年份:
    2019
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: TRIPODS Institute for Optimization and Learning
合作研究:TRIPODS 优化与学习研究所
  • 批准号:
    1925930
  • 财政年份:
    2019
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: Collaborative Research: Foundations of Greater Data Science
HDR TRIPODS:协作研究:大数据科学的基础
  • 批准号:
    1934985
  • 财政年份:
    2019
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Continuing Grant
TRIPODS+X: EDU: Collaborative Research: Investigations of Student Difficulties in Data Science Instruction
TRIPODS X:EDU:协作研究:学生在数据科学教学中遇到的困难的调查
  • 批准号:
    1839270
  • 财政年份:
    2018
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Standard Grant
Tripods+X:Res: Collaborative Research: Identification of Gene Regulatory Network Function from Data
Tripods X:Res:协作研究:从数据中识别基因调控网络功能
  • 批准号:
    1839294
  • 财政年份:
    2018
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Standard Grant
TRIPODS+X:RES: Collaborative Research: Data Science Frontiers in Climate Science
TRIPODS X:RES:合作研究:气候科学中的数据科学前沿
  • 批准号:
    1839336
  • 财政年份:
    2018
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Standard Grant
TRIPODS+X:RES: Collaborative Research: Thermodynamic Phases and Configuration Space Topology
TRIPODS X:RES:协作研究:热力学相和构型空间拓扑
  • 批准号:
    1839358
  • 财政年份:
    2018
  • 资助金额:
    $ 89.57万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了