BIGDATA: F: Latent Structure and Dynamics of Big Data
BIGDATA:F:大数据的潜在结构和动态
基本信息
- 批准号:1741355
- 负责人:
- 金额:$ 90万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Big data poses big challenges. Perhaps the biggest challenge is to extract small but useful information from big noisy data. What approach should be used to do that, and for what data, so that this extraction is scalable, and yields not spurious artifacts but provably reliable predictive knowledge? Numerous data science applications are blocked on these questions. For example, the prediction and control of opinions, (fake) news, and (mis)information is a practical problem that is becoming of increasingly high and broad impact these days of pervasion of online social media into everyday human life. This particular problem is largely blocked on general impossibility of disentangling those who naturally bond with others like themselves from those influenced by peers in social networks, except in some specific settings. The specific settings of this project -- real networks with latent-space structure -- are exactly the settings in which these theoretical and practical difficulties can be resolved.The project will make a series of contributions in two areas. First, it will resolve a long-standing problem of obtaining a class of random graph models satisfying four requirements of realism: sparsity, exchangeability, projectivity and unbiasedness/maximum-entropy. Within this class, a set of graph-structural properties will be determined such that unbiased random graphs that have these properties are proved to have latent-geometric structure, thus rigorously linking discrete combinatorial structure of random graphs to smooth geometry of latent manifolds. The framework that the project will develop to prove this, will be quite general and applicable to other types of big data. The properties responsible for latent geometricity of random graphs are expected to characterize many real networks, meaning that such networks will be guaranteed to have latent geometries. The second part of the project will focus on developing scalable algorithms and software, with optimal computational complexity scaling linearly with the data size, and with proved accuracy guarantees, to learn the latent structure of a real network if the network has it, and apply these algorithms to large real networks. The outcomes of this latent-geometric learning will make it possible to map dynamical processes in real networks, such as spreading phenomena in social networks, to latent dynamics, while the knowledge of latent statistical factors behind this dynamic can then be used to predict and control it in practice with known accuracy bounds.
大数据带来了巨大的挑战。也许最大的挑战是从大量嘈杂的数据中提取小而有用的信息。应该使用什么方法来做这些,对于什么数据,这样提取是可伸缩的,产生的不是虚假的工件,而是可证明的可靠的预测知识?许多数据科学应用程序在这些问题上受阻。例如,预测和控制意见、(假)新闻和(错误)信息是一个现实问题,随着在线社交媒体渗透到日常生活中,这个问题正变得越来越高,影响越来越广泛。这个特殊的问题在很大程度上是由于一般不可能将那些天生与自己相似的人联系在一起的人与那些在社交网络中受到同伴影响的人分开,除了在某些特定的环境中。本项目的具体设置——具有潜在空间结构的真实网络——正是解决这些理论和实践难题的设置。该项目将在两个领域做出一系列贡献。首先,它将解决一个长期存在的问题,即获得一类满足现实主义四个要求的随机图模型:稀疏性、可交换性、投射性和无偏性/最大熵。在本课程中,将确定一组图结构性质,从而证明具有这些性质的无偏随机图具有潜在几何结构,从而严格地将随机图的离散组合结构与潜在流形的光滑几何联系起来。该项目将开发的框架来证明这一点,将非常通用,并适用于其他类型的大数据。对随机图的潜在几何性负责的性质被期望描述许多真实网络,这意味着这些网络将保证具有潜在的几何性。该项目的第二部分将侧重于开发可扩展的算法和软件,具有最佳的计算复杂度随数据大小线性扩展,并具有经过验证的准确性保证,以学习真实网络的潜在结构(如果网络有的话),并将这些算法应用于大型真实网络。这种潜在几何学习的结果将有可能将真实网络中的动态过程(例如社会网络中的传播现象)映射到潜在动态,而这种动态背后的潜在统计因素的知识可以用于在实践中以已知的精度界限预测和控制它。
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integration of Molecular Interactome and Targeted Interaction Analysis to Identify a COPD Disease Network Module.
- DOI:10.1038/s41598-018-32173-z
- 发表时间:2018-09-27
- 期刊:
- 影响因子:4.6
- 作者:Sharma A;Kitsak M;Cho MH;Ameli A;Zhou X;Jiang Z;Crapo JD;Beaty TH;Menche J;Bakke PS;Santolini M;Silverman EK
- 通讯作者:Silverman EK
Geohyperbolic Routing and Addressing Schemes
- DOI:10.1145/3138808.3138811
- 发表时间:2017-03
- 期刊:
- 影响因子:2.8
- 作者:Ivan Voitalov;R. Aldecoa;Lan Wang;D. Krioukov
- 通讯作者:Ivan Voitalov;R. Aldecoa;Lan Wang;D. Krioukov
Inference of boundaries in causal sets
因果集中边界的推断
- DOI:10.1088/1361-6382/aaadc4
- 发表时间:2018
- 期刊:
- 影响因子:3.5
- 作者:Cunningham, William J
- 通讯作者:Cunningham, William J
Machine learning in the string landscape
- DOI:10.1007/jhep09(2017)157
- 发表时间:2017-09-28
- 期刊:
- 影响因子:5.4
- 作者:Carifio, Jonathan;Halverson, James;Nelson, Brent D.
- 通讯作者:Nelson, Brent D.
Generating maximally disassortative graphs with given degree distribution
- DOI:10.1287/stsy.2017.0006
- 发表时间:2016-07
- 期刊:
- 影响因子:0
- 作者:P. Hoorn;L. Prokhorenkova;E. Samosvat
- 通讯作者:P. Hoorn;L. Prokhorenkova;E. Samosvat
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitri Krioukov其他文献
Diameter of Compact Riemann Surfaces
- DOI:
10.1007/s40315-024-00546-3 - 发表时间:
2024-06-27 - 期刊:
- 影响因子:0.700
- 作者:
Huck Stepanyants;Alan Beardon;Jeremy Paton;Dmitri Krioukov - 通讯作者:
Dmitri Krioukov
Network geometry
网络几何形状
- DOI:
10.1038/s42254-020-00264-4 - 发表时间:
2021-01-29 - 期刊:
- 影响因子:39.500
- 作者:
Marián Boguñá;Ivan Bonamassa;Manlio De Domenico;Shlomo Havlin;Dmitri Krioukov;M. Ángeles Serrano - 通讯作者:
M. Ángeles Serrano
Dmitri Krioukov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitri Krioukov', 18)}}的其他基金
CIF: Small: Projective limits of sparse graphs
CIF:小:稀疏图的投影极限
- 批准号:
2311160 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
NetSE: Medium: Discovering Hyperbolic Metric Spaces Hidden beneath the Internet and Other Complex Networks
NetSE:中:发现隐藏在互联网和其他复杂网络之下的双曲度量空间
- 批准号:
1441828 - 财政年份:2014
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
INSPIRE Track 1: Geometry and Physics of Network Dynamics
INSPIRE 轨道 1:网络动力学的几何和物理
- 批准号:
1442999 - 财政年份:2014
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
INSPIRE Track 1: Geometry and Physics of Network Dynamics
INSPIRE 轨道 1:网络动力学的几何和物理
- 批准号:
1344289 - 财政年份:2013
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
NetSE: Medium: Discovering Hyperbolic Metric Spaces Hidden beneath the Internet and Other Complex Networks
NetSE:中:发现隐藏在互联网和其他复杂网络之下的双曲度量空间
- 批准号:
0964236 - 财政年份:2010
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
FIA: Collaborative Research: Named Data Networking (NDN)
FIA:协作研究:命名数据网络 (NDN)
- 批准号:
1039646 - 财政年份:2010
- 资助金额:
$ 90万 - 项目类别:
Standard Grant
NeTS-FIND: Greedy Routing on Hidden Metric Spaces as a Foundation of Scalable Routing Architectures without Topology Updates
NeTS-FIND:隐藏度量空间上的贪婪路由作为无需拓扑更新的可扩展路由架构的基础
- 批准号:
0722070 - 财政年份:2007
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
相似海外基金
Technology to capture latent relationships using network structure and its applications
利用网络结构捕获潜在关系的技术及其应用
- 批准号:
23K01632 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Bayesian Sparse Dirichlet-Multinomial Models for Discovering Latent Structure in High-Dimensional Compositional Count Data
用于发现高维组合计数数据中潜在结构的贝叶斯稀疏狄利克雷多项模型
- 批准号:
2245492 - 财政年份:2023
- 资助金额:
$ 90万 - 项目类别:
Continuing Grant
Uncovering the latent structure in single-cell multi-omics data to study human diseases
揭示单细胞多组学数据中的潜在结构以研究人类疾病
- 批准号:
RGPIN-2022-04629 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Discovery Grants Program - Individual
Uncovering the latent structure in single-cell multi-omics data to study human diseases
揭示单细胞多组学数据中的潜在结构以研究人类疾病
- 批准号:
DGECR-2022-00407 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Discovery Launch Supplement
Assessing latent-structure models in natural language processing with artificial datasets
使用人工数据集评估自然语言处理中的潜在结构模型
- 批准号:
RGPIN-2021-03134 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Discovery Grants Program - Individual
Latent data structure estimation through integrating diverse data
通过整合不同数据进行潜在数据结构估计
- 批准号:
22H03645 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Online detection of changes in the latent structure of network models
在线检测网络模型潜在结构的变化
- 批准号:
2748724 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Studentship
Towards a mathematical description of complex networks: Effective structure and latent hyperbolic geometry
走向复杂网络的数学描述:有效结构和潜在双曲几何
- 批准号:
RGPIN-2019-05183 - 财政年份:2022
- 资助金额:
$ 90万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




