EAGER: Characterizing and Accelerating Real-Time IoT Applications using FPGAs
EAGER:使用 FPGA 表征和加速实时物联网应用
基本信息
- 批准号:1742899
- 负责人:
- 金额:$ 17.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rapid advances in technology scaling have driven the development of inexpensive sensing platforms with limited compute capabilities. Deployed at the network edge, these platforms enable the instrumentation of the physical world. Using offline analytical pipelines on cloud resources, municipalities have leveraged this data to manage and even improve environmental conditions promoting public health, safety, and quality of life. However, for emergency scenarios, such as large-scale building fires where network access is limited, relying on off-site cloud resources for real-time analysis of sensor data is impractical. This project investigates how hardware acceleration can be efficiently integrated into computing platforms at the network edge, enabling the use of real-time analytical pipelines at the edge to create smart, intelligent systems without requiring access to cloud resources.This project addresses the problem of efficiently integrating acceleration within edge devices by characterizing and analyzing the power and performance of real-time workloads with a focus on high-impact applications used by first responders. Based on this characterization, we are building analytical performance and power models for these emergent workloads. These models provide insight on prospective hardware acceleration techniques and identify the limits of acceleration given the power constraints for our specific real-time use cases. Using these models we are integrating Field-Programmable Gate Arrays (FPGAs) into prototype edge devices, developing novel FPGA images for key analytical pipelines within our first responder workloads, and evaluating the power and performance impact within real systems. This work provides unique insight into the composition of future edge devices to enable real-time analytics.
技术规模的快速发展推动了计算能力有限的廉价传感平台的发展。这些平台部署在网络边缘,使物理世界的仪器仪表成为可能。市政当局利用云资源上的离线分析管道,利用这些数据来管理甚至改善环境条件,促进公共健康、安全和生活质量。然而,对于紧急情况,如网络接入有限的大规模建筑火灾,依靠非现场云资源对传感器数据进行实时分析是不切实际的。该项目研究如何将硬件加速有效地集成到网络边缘的计算平台中,从而在不需要访问云资源的情况下,在边缘使用实时分析管道来创建智能、智能的系统。该项目通过描述和分析实时工作负载的功率和性能,重点关注第一响应者使用的高影响应用程序,解决了在边缘设备中有效集成加速的问题。基于此特征,我们正在为这些紧急工作负载构建分析性能和功率模型。这些模型提供了对未来硬件加速技术的见解,并在我们特定的实时用例的功率约束下确定了加速的限制。使用这些模型,我们将现场可编程门阵列(FPGA)集成到原型边缘设备中,为第一响应者工作负载中的关键分析管道开发新型FPGA图像,并评估实际系统中的功率和性能影响。这项工作提供了对未来边缘设备组成的独特见解,以实现实时分析。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating Voice Interaction Pipelines at the Edge
- DOI:10.1109/ieee.edge.2017.46
- 发表时间:2017-06
- 期刊:
- 影响因子:0
- 作者:S. Sridhar;Matthew E. Tolentino
- 通讯作者:S. Sridhar;Matthew E. Tolentino
Characterizing the impact of topology on IoT stream processing
- DOI:10.1109/wf-iot.2018.8355119
- 发表时间:2018-02
- 期刊:
- 影响因子:0
- 作者:Anindya Dey;Kim Stuart;Matthew E. Tolentino
- 通讯作者:Anindya Dey;Kim Stuart;Matthew E. Tolentino
Evaluating the impact of pushing voice-driven interaction pipelines to the edge
- DOI:10.1145/3203217.3203242
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:S. Sridhar;Matthew E. Tolentino
- 通讯作者:S. Sridhar;Matthew E. Tolentino
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Tolentino其他文献
Matthew Tolentino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Characterizing Transition to Turbulence in Pulsatile Pipe Flow
表征脉动管流中的湍流转变
- 批准号:
2335760 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Research: Characterizing Gendered Socialization of Early Career Civil Engineers to Promote Inclusive Practices and Retention of a Diverse Workforce
研究:表征早期职业土木工程师的性别社会化,以促进包容性实践和保留多元化的劳动力
- 批准号:
2414042 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Characterizing Pareto fronts: Trade-offs in the yeast growth cycle constrain adaptation
表征帕累托前沿:酵母生长周期的权衡限制了适应
- 批准号:
10749856 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
CAREER: Complexity Theory of Quantum States: A Novel Approach for Characterizing Quantum Computer Science
职业:量子态复杂性理论:表征量子计算机科学的新方法
- 批准号:
2339116 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant
Collaborative Research: Characterizing Atmospheric Tropical-waves of the Lower Stratosphere with Reel-down Atmospheric Temperature Sensing for Strateole-2--RATS Chasing CATS!
合作研究:利用 Strateole-2 的卷轴大气温度传感来表征平流层下部的大气热带波——RATS 追逐 CATS!
- 批准号:
2335083 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant
Collaborative Research: Characterizing Atmospheric Tropical-waves of the Lower Stratosphere with Reel-down Atmospheric Temperature Sensing for Strateole-2--RATS Chasing CATS!
合作研究:利用 Strateole-2 的卷轴大气温度传感来表征平流层下部的大气热带波——RATS 追逐 CATS!
- 批准号:
2335082 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Continuing Grant
ERI: Characterizing and improving algae-derived biofuel droplet burning
ERI:表征和改善藻类生物燃料液滴燃烧
- 批准号:
2301490 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Women's voice: A new theory for characterizing the nature of female employee behavior
女性的声音:描述女性员工行为本质的新理论
- 批准号:
24K16417 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Characterizing and empowering student success when traversing the academic help landscape
协作研究:在穿越学术帮助景观时描述并赋予学生成功的能力
- 批准号:
2336804 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant
Collaborative Research: Characterizing and empowering student success when traversing the academic help landscape
协作研究:在穿越学术帮助景观时描述并赋予学生成功的能力
- 批准号:
2336805 - 财政年份:2024
- 资助金额:
$ 17.49万 - 项目类别:
Standard Grant