Group Travel Award for 2017 Workshop on Learning Perception and Control for Autonomous Flight: Safety, Memory, and Efficiency
2017年自主飞行学习感知与控制研讨会团体旅游奖:安全、记忆和效率
基本信息
- 批准号:1743262
- 负责人:
- 金额:$ 1.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-15 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Aerial robots, commonly referred to as drones, offer promise in several research, educational, defense and commercial applications. Some examples include precise agriculture, aerial photography, agile inspection and monitoring, and package delivery. In most of those applications that aerial robots have started venturing outside the research lab and into the real world, robot operation is often semi-autonomous. Semi-autonomous operation typically assumes availability of GPS signal for localization, and at least some prior information about the working environment. Sensory-based, fully autonomous operation in unknown environments remains mostly at the research stage. Yet, endowing full autonomy to aerial robots can enhance their impact on the nation's education, economy, and defense. To this end, it is important to seamlessly merge perception, planning, and control for autonomous robotic flight in unknown environments. This can be achieved by integrating machine learning tools into aerial robot perception and control. Deep learning has recently emerged as a promising way to extract semantic meaning for autonomy. Learning perception and control for autonomous flight can be approached by replacing hand-engineered map representations with raw sensor observations, and learning appropriate responses. However, this is not a straightforward task, and several challenges remain. This workshop critically addresses how to i) best incorporate memory and ii) derive safety guarantees for the learning-based system. These two aspects are necessary to improve the capacity of aerial robots to operate autonomously in unknown environments, and to push forward the current state-of-the-art in robotic flight. In addition to the domain of robotic flight, the outcomes of this workshop are relevant to endowing autonomy in general robotic systems that are able to learn, thus helping make autonomous robots ubiquitous.The objective of this workshop is to address the theoretical and technical challenges faced in order to endow learning-based systems with the capacity to operate autonomously in unknown environments. A critical step in this effort is to understand how memory-augmented autonomous learners can operate with provable safety guarantees. The workshop thus examines two highly-relevant questions. i) How to theoretically analyze the data and structure of learning-based systems to provide guarantees on safety and task success? ii) What is the effect of long-term memory and, in particular, can recurrent connections or dynamic external memory replace global map information? The workshop seeks answers to these questions by bringing together experts from robot planning and control, reinforcement learning and deep learning, and formal methods. The workshop also solicits participation of contributed authors working in relevant areas. These include but are not limited to applying deep reinforcement learning for vision-based control of underactuated robots; learning visuomotor policies and deriving formal guarantees for learning based on neural networks; and developing neural network architectures that involve temporal recurrence and memory. The above questions are asked here in the context of high-speed aerial robot autonomous navigation. However, their scope can be generalized to other areas of robotics that learning perception and control for autonomous operation in unknown environments is desirable; examples include manipulation and legged locomotion.
空中机器人,通常被称为无人机,在几个研究、教育、国防和商业应用方面有希望。一些例子包括精准农业、航空摄影、敏捷检查和监测以及包裹递送。在空中机器人开始冒险走出研究实验室、进入现实世界的大多数应用中,机器人的操作往往是半自动的。半自主操作通常假设GPS信号可用于定位,以及至少一些关于工作环境的先验信息。在未知的环境中,基于感觉的、完全自主的操作大多仍处于研究阶段。然而,赋予空中机器人完全自主性可以增强它们对国家教育、经济和国防的影响。为此,将感知、规划和控制无缝地融合到未知环境中的自主机器人飞行中是很重要的。这可以通过将机器学习工具集成到空中机器人的感知和控制中来实现。深度学习是最近出现的一种很有前途的提取自主语义的方法。学习自主飞行的感知和控制可以通过用原始传感器观测取代手工设计的地图表示,并学习适当的响应来实现。然而,这并不是一项简单的任务,仍然存在几个挑战。本研讨会重点讨论如何i)以最佳方式整合记忆和ii)为基于学习的系统提供安全保证。这两个方面对于提高空中机器人在未知环境中自主操作的能力,推动当前机器人飞行的最先进水平是必要的。除了机器人飞行领域,这个研讨会的成果与赋予能够学习的一般机器人系统的自主性相关,从而帮助使自主机器人无处不在。本研讨会的目标是解决所面临的理论和技术挑战,以便赋予基于学习的系统在未知环境中自主操作的能力。这一努力的关键一步是了解记忆增强的自主学习者如何在可证明的安全保证下运作。因此,研讨会审查了两个高度相关的问题。I)如何从理论上分析基于学习的系统的数据和结构,为安全和任务成功提供保证?Ii)长期记忆的作用是什么,尤其是循环连接或动态外部记忆能否取代全局地图信息?研讨会通过召集来自机器人规划和控制、强化学习和深度学习以及正式方法的专家来寻求这些问题的答案。研讨会还邀请在相关领域工作的投稿作者参加。这些包括但不限于将深度强化学习应用于欠驱动机器人的基于视觉的控制;学习视觉运动策略并基于神经网络推导学习的形式保证;以及开发涉及时间递归和记忆的神经网络结构。上述问题是在高速空中机器人自主导航的背景下提出的。然而,它们的范围可以推广到机器人学的其他领域,即在未知环境中学习自主操作的感知和控制是可取的;例如操纵和腿部运动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Konstantinos Karydis其他文献
Uncertainty Quantification for Small Robots Using Principal Orthogonal Decomposition
使用主正交分解对小型机器人进行不确定性量化
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Konstantinos Karydis;M. A. Hsieh - 通讯作者:
M. A. Hsieh
Development and Preliminary Evaluation of a Pneumatic Sitting Postural Device for Infants
- DOI:
10.1016/j.apmr.2020.10.033 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:
- 作者:
Nancy Godinez;Sierra Lopez;Avanti Mulji;Allison Pickle;Ponmathi Ramasamy Jayaseelan;Konstantinos Karydis;Elena Kokkoni - 通讯作者:
Elena Kokkoni
End-to-End Navigation in Unknown Environments using Neural Networks
使用神经网络在未知环境中进行端到端导航
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Arbaaz Khan;Clark Zhang;Nikolay A. Atanasov;Konstantinos Karydis;Daniel D. Lee;Vijay R. Kumar - 通讯作者:
Vijay R. Kumar
Neural Network Memory Architectures for Autonomous Robot Navigation
用于自主机器人导航的神经网络内存架构
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Steven W. Chen;Nikolay A. Atanasov;Arbaaz Khan;Konstantinos Karydis;Daniel D. Lee;Vijay R. Kumar - 通讯作者:
Vijay R. Kumar
Energy efficiency of trajectory generation methods for stop-and-go aerial robot navigation
走走停停的空中机器人导航轨迹生成方法的能源效率
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Nadia Kreciglowa;Konstantinos Karydis;Vijay R. Kumar - 通讯作者:
Vijay R. Kumar
Konstantinos Karydis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Konstantinos Karydis', 18)}}的其他基金
FW-HTF-RL/Collaborative Research: Elevating Farm Worker-Robot Collaborations in Agri-Food Ecosystems
FW-HTF-RL/协作研究:提升农业食品生态系统中的农场工人与机器人协作
- 批准号:
2326309 - 财政年份:2023
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
CAREER: Morphological Computation for Resilient Dynamic Locomotion of Compliant Legged Robots with Application to Precision Agriculture
职业:顺应腿式机器人弹性动态运动的形态计算及其在精准农业中的应用
- 批准号:
2046270 - 财政年份:2021
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
NRI: Integrated Soft Wearable Robotics Technology to Assist Arm Movement of Infants with Physical Impairments
NRI:集成软可穿戴机器人技术,协助身体障碍婴儿的手臂运动
- 批准号:
2133084 - 财政年份:2021
- 资助金额:
$ 1.2万 - 项目类别:
Continuing Grant
RI: Small: Collaborative Research: Extracting Dynamics from Limited Data for Modeling and Control of Unmanned Autonomous Systems
RI:小型:协作研究:从有限数据中提取动力学,用于无人自主系统的建模和控制
- 批准号:
1910087 - 财政年份:2019
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
相似海外基金
Group Travel Award: SCAR XIII International Symposium on Antarctic Earth Sciences: Korea, July 2019
团体旅行奖:SCAR XIII 南极地球科学国际研讨会:韩国,2019 年 7 月
- 批准号:
1923237 - 财政年份:2019
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
Group Travel Award: XXXVth SCAR Open Science Conference
团体旅行奖:第XXXV届SCAR开放科学会议
- 批准号:
1824677 - 财政年份:2018
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
Group Travel Award: XIIth SCAR International Biology Symposium
团体旅行奖:第十二届SCAR国际生物学研讨会
- 批准号:
1704236 - 财政年份:2017
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
Group Travel Award for 2015 Workshop on Miniature Legged Robots
2015年微型腿式机器人研讨会团体旅游奖
- 批准号:
1546663 - 财政年份:2015
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
Group Travel Award: IPY 2010 Oslo Science Conference
团体旅行奖:IPY 2010 奥斯陆科学会议
- 批准号:
1032352 - 财政年份:2010
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
Group Travel Award: Scientific Committee on Antarctic Research 2010 International Polar Year Open Science Conference
团体旅游奖:南极研究科学委员会2010国际极地年开放科学大会
- 批准号:
1022920 - 财政年份:2010
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
Group Travel Award: Xth SCAR International Biology Symposium
团体旅行奖:第X届SCAR国际生物学研讨会
- 批准号:
0910916 - 财政年份:2009
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
Group Travel Award to the VIII IberoAmerican Conference on Phase Equilibria and Fluid for Process Design: Oct 17-21, 2009 in Praia da Rocha, Portugal
第八届伊比利亚美洲工艺设计相平衡和流体会议团体旅行奖:2009 年 10 月 17 日至 21 日在葡萄牙普拉亚达罗查举行
- 批准号:
0946360 - 财政年份:2009
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
Group Travel Award: IX SCAR International Biology Symposium; Curitiba, Brazil
团体旅游奖:IX SCAR国际生物学研讨会;
- 批准号:
0541689 - 财政年份:2005
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant
Biota and Ecosystems of the Southern Temperate Zone: Group Travel Award for an International Conference in Cape Town, South Africa 2003
南温带生物群和生态系统:2003 年南非开普敦国际会议团体旅游奖
- 批准号:
0203254 - 财政年份:2002
- 资助金额:
$ 1.2万 - 项目类别:
Standard Grant