Unconventional superconducting transport in semiconductor Dirac materials

半导体狄拉克材料中的非常规超导输运

基本信息

项目摘要

Recent years have seen a splash of interest in semiconductor Dirac materials (SDMs) which include bulk narrow gap semiconductors (e.g. Bi2Se3, Bi2Te3, HgTe) and their heterostructures (e.g. HgTe quantum wells). Bulk samples of Bi2Se3, Bi2Te3, HgTe and other similar compounds support unusual surface electronic states that mimic the behavior of the two-dimensional massless Dirac fermions. The n-type HgTe quantum wells exhibit a more general type of Dirac carriers, with a tunable effective mass and nontrivial band curvature. What qualitatively distinguishes the SDMs from other Dirac materials (e.g. graphene) as well as from the conventional wide band semiconductors is the fact that in a SDM the charge carriers are characterized by a well-defined spin helicity, i.e. the locking of the spin and momentum directions. A large body of research exists on the role of the spin helicity in the electron transport in the SDMs. Until now, however, this issue has been investigated mainly in the normal (i.e. non-superconducting) transport regime. Very recently, first successful experiments on the proximity and Josephson effects in the SDMs have appeared, unfolding their potential as a new type of superconducting weak links. The objective of the present proposal is the theoretical investigation of the superconducting transport in spin-helical SDM weak links with the focus on induced p-wave superconductivity. The p-wave superconductivity is unconventional in condensed matter systems, giving rise to exotic phenomena such as Majorana bound states that could play an important role in quantum information processing. This project deals with a related, but barely explored phenomenon - superconducting Klein tunneling - and its manifestations in various mesoscopic SDM structures. The superconducting Klein tunneling implies protection of the supercurrent against usual scattering mechanisms, which in practice may help to improve the transport characteristics of Josephson junctions.
近年来,半导体狄拉克材料(SDM)引起了人们极大的兴趣,所述半导体狄拉克材料包括体窄禁带半导体(例如Bi 2 Se 3、Bi 2 Te 3、HgTe)及其异质结构(例如HgTe量子威尔斯阱)。Bi 2Se 3,Bi 2 Te 3,HgTe和其他类似化合物的大块样品支持不寻常的表面电子态,模拟二维无质量狄拉克费米子的行为。n型HgTe量子威尔斯呈现出更一般类型的狄拉克载流子,具有可调的有效质量和非平凡的能带曲率。SDM与其他狄拉克材料(例如石墨烯)以及传统宽带半导体的定性区别在于,在SDM中,电荷载流子的特征在于明确定义的自旋螺旋度,即自旋和动量方向的锁定。大量的研究存在的自旋螺旋度的作用,电子输运中的SDM。然而,到目前为止,这个问题主要是在正常(即非超导)运输制度的研究。最近,第一次成功的实验在SDM的邻近效应和约瑟夫森效应已经出现,展现了他们的潜力,作为一种新型的超导弱连接。本论文的目标是研究自旋螺旋SDM弱连接中的超导输运,重点研究诱导p波超导性。p波超导性在凝聚态系统中是非常规的,引起了奇异的现象,如马约拉纳束缚态,可以在量子信息处理中发挥重要作用。这个项目涉及一个相关的,但几乎没有探索的现象-超导克莱因隧道-及其表现在各种介观SDM结构。超导Klein隧穿意味着保护超导电流不受通常的散射机制的影响,这在实践中可能有助于改善约瑟夫森结的输运特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr. Grigory Tkachov, Ph.D.其他文献

Dr. Grigory Tkachov, Ph.D.的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr. Grigory Tkachov, Ph.D.', 18)}}的其他基金

Quantum interference and entanglement of helical supercurrents in Dirac materials
狄拉克材料中螺旋超电流的量子干涉和纠缠
  • 批准号:
    292118933
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

Spin transport phenomena in topological superconducting materials
拓扑超导材料中的自旋输运现象
  • 批准号:
    20K14397
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Nonequilibrium transport and odd-frequency Cooper pairs in superconducting junctions
超导结中的非平衡输运和奇频库珀对
  • 批准号:
    19J02005
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Investigation of in-field current transport properties for design of superconducting power devices
超导功率器件设计的现场电流传输特性研究
  • 批准号:
    18H01928
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Transport properties of superconducting hybrid structures based on quantum wells with normal and inverted band ordering
基于正向和反向能带有序量子阱的超导混合结构的输运特性
  • 批准号:
    317332961
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Low-energy transport theory of hybrid topologically superconducting devices
混合拓扑超导器件的低能输运理论
  • 批准号:
    322948903
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Multi-scale analyses of km-class long length high Tc superconducting tapes and analytical modeling of current transport properties
km级长高Tc超导带的多尺度分析和电流输运特性的分析模型
  • 批准号:
    16H02334
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Non equilibrium transport and dynamics in conventional and topological superconducting junctions
常规和拓扑超导结中的非平衡输运和动力学
  • 批准号:
    326061083
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Superconducting transport phenomena and the electron structures in semiconductor nanowires
半导体纳米线中的超导输运现象和电子结构
  • 批准号:
    15H05407
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Studies on superconducting transport in graphene/superconductor junction at high magnetic fields
高磁场下石墨烯/超导结中的超导输运研究
  • 批准号:
    25790010
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Search for new electronic transport phenomena in chiral p-wave superconducting junction
寻找手性p波超导结中新的电子输运现象
  • 批准号:
    24540368
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了