EAGER: Malicious Behavior Detection in Hybrid Dynamic Spectrum Access

EAGER:混合动态频谱访问中的恶意行为检测

基本信息

  • 批准号:
    1744261
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2019-09-30
  • 项目状态:
    已结题

项目摘要

To tackle the ever-increasing spectrum scarcity issue, dynamic spectrum access is envisioned as a set of promising new spectrum management paradigms. Although it has enabled the opportunistic access of underutilized licensed bands, various practical factors, such as environmental dynamics, intentional interference, and unauthorized transmission, hinder it from wide deployment. The recently released FCC rules suggest participatory real-time spectrum sensing can greatly improve the spectrum utilization efficiency for database-driven spectrum sharing, which forms a new paradigm, hybrid dynamic spectrum sharing. However, the frequent information exchanged between secondary users and spectrum database can be easily intercepted and manipulated by malicious users, which not only downgrades the spectrum efficiency but also incurs severe security breaches to the hybrid dynamic spectrum access system. This project will explore new paradigms of safeguarding the future cognitive radio system with focus on non-compliance behavior detection. The success of this project will serve as a key enabler to provide reliable wireless communication in the near future.This project will investigate several fundamental security challenges in the newly defined hybrid dynamic spectrum access. This first research task will identify new attack models that compromise the spectrum efficiency and then provide countermeasures adapted to future wireless systems. Due to the inherent nature of database-driven spectrum access, primary user emulation (PUE) attackers can retrieve the spectrum availability information to either perform as the incumbent user (IU) when it is not present, or try to increase secondary users' transmission power to interfere with present IUs. Featuring the sensing results stored in the database, novel detection schemes will be designed to mitigate the influence brought by the attack. The second research task leverages physical-layer approaches to detect unauthorized access under different channel models. To address this issue, channel availability information will be used to detect malicious secondary users. Meanwhile, the detection mechanisms will be developed with joint consideration on practicality and efficiency. Additionally, the project includes strong validation component that combines simulation study, prototyping, and experimentation. It will thus provide an effective training ground for interdisciplinary subjects including wireless networks, wireless communication, and cybersecurity, all of which are critical to diversified professionals for future national work force.
为了解决日益严重的频谱稀缺问题,动态频谱接入被设想为一组有前途的新频谱管理范例。虽然它已经使得机会主义接入未充分利用的许可频带,但各种实际因素,例如环境动态,故意干扰和未经授权的传输,阻碍了它的广泛部署。最近发布的FCC规则表明,参与式实时频谱感知可以大大提高数据库驱动的频谱共享的频谱利用效率,这形成了一种新的范式,混合动态频谱共享。然而,次用户与频谱数据库之间频繁交换的信息很容易被恶意用户截获和操纵,这不仅降低了频谱利用率,而且给混合动态频谱接入系统带来了严重的安全隐患。该项目将探索保护未来认知无线电系统的新范式,重点是违规行为检测。该项目的成功将成为在不久的将来提供可靠的无线通信的关键推动因素。该项目将研究新定义的混合动态频谱接入中的几个基本安全挑战。这第一个研究任务将确定新的攻击模式,损害频谱效率,然后提供适应未来无线系统的对策。由于数据库驱动的频谱接入的固有性质,主用户仿真(PUE)攻击者可以检索频谱可用性信息,以在现任用户(IU)不存在时作为现任用户(IU)执行,或者尝试增加次用户的传输功率以干扰当前IU。利用存储在数据库中的检测结果,设计新的检测方案来减轻攻击带来的影响。第二个研究任务是利用物理层方法来检测不同信道模型下的未授权访问。为解决此问题,将使用通道可用性信息来检测恶意次要用户。与此同时,将在兼顾实用性和效率的情况下开发检测机制。此外,该项目包括强大的验证组件,结合了模拟研究,原型设计和实验。因此,它将为跨学科学科提供有效的培训基地,包括无线网络,无线通信和网络安全,所有这些都对未来国家劳动力的多元化专业人员至关重要。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Motivating Human-Enabled Mobile Participation for Data Offloading
  • DOI:
    10.1109/tmc.2017.2773087
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Xiaonan Zhang;Linke Guo;Ming Li;Yuguang Fang
  • 通讯作者:
    Xiaonan Zhang;Linke Guo;Ming Li;Yuguang Fang
Incentivizing Relay Participation for Securing IoT Communication
If You Do Not Care About It, Sell It: Trading Location Privacy in Mobile Crowd Sensing
CREAM: Unauthorized Secondary User Detection in Fading Environments
Secure and optimized unauthorized secondary user detection in dynamic spectrum access
动态频谱访问中安全且优化的未授权二级用户检测
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Linke Guo其他文献

FreeEM: Uncovering Parallel Memory EMR Covert Communication in Volatile Environments
FreeEM:揭示不稳定环境中的并行内存 EMR 隐蔽通信
Extreme weather, IT investment, and corporate sustainability
极端天气、信息技术投资和企业可持续性
Physiological and transcriptomic responses of the microalga Isochrysis galbana during exposure to Hg(II) stress
  • DOI:
    10.1007/s11274-025-04330-w
  • 发表时间:
    2025-05-05
  • 期刊:
  • 影响因子:
    4.200
  • 作者:
    Linlin Zhang;Na Li;Xinfeng Xiao;Linke Guo;Wenfang Li;Yanjun Li;Fei Ling
  • 通讯作者:
    Fei Ling
User-centric private matching for eHealth networks - A social perspective
以用户为中心的电子医疗网络私人匹配 - 社会视角

Linke Guo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Linke Guo', 18)}}的其他基金

Collaborative Research: SHF: Medium: Towards Harmonious Federated Intelligence in Heterogeneous Edge Computing via Data Migration
协作研究:SHF:中:通过数据迁移实现异构边缘计算中的和谐联邦智能
  • 批准号:
    2312616
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Collaborative Research: CNS Core: Small: Scalable, Flexible, and Dependable Architecture Design for Heterogeneous Internet of Things
合作研究:CNS核心:小型:异构物联网的可扩展、灵活、可靠的架构设计
  • 批准号:
    2008049
  • 财政年份:
    2020
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Towards Privacy-Preserving Mobile Crowd Sensing: A Multi-Stage Solution
CCSS:协作研究:迈向保护隐私的移动人群感知:多阶段解决方案
  • 批准号:
    1949639
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
EAGER: Malicious Behavior Detection in Hybrid Dynamic Spectrum Access
EAGER:混合动态频谱访问中的恶意行为检测
  • 批准号:
    1947065
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Crowd in Action: Human-Centric Privacy-Preserving Data Analytics for Environmental Public Health
SCH:INT:协作研究:人群在行动:以人为本的隐私保护环境公共卫生数据分析
  • 批准号:
    1949640
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Crowd in Action: Human-Centric Privacy-Preserving Data Analytics for Environmental Public Health
SCH:INT:协作研究:人群在行动:以人为本的隐私保护环境公共卫生数据分析
  • 批准号:
    1722731
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Towards Privacy-Preserving Mobile Crowd Sensing: A Multi-Stage Solution
CCSS:协作研究:迈向保护隐私的移动人群感知:多阶段解决方案
  • 批准号:
    1710996
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Preventing Exfiltration of Sensitive Data by Malicious Insiders or Malwares
防止恶意内部人员或恶意软件泄露敏感数据
  • 批准号:
    DP240101032
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Projects
CAREER: Holistic Framework for Constructing Dynamic Malicious Knowledge Bases in Social Networks
职业:在社交网络中构建动态恶意知识库的整体框架
  • 批准号:
    2348452
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Advancing Human Perception: Countering Evolving Malicious Fake Visual Data
提升人类感知:对抗不断演变的恶意虚假视觉数据
  • 批准号:
    DE230100477
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Discovery Early Career Researcher Award
Malicious anomaly detection/localization in 5G systems through group behaviour profiling based on federated machinelLearning
通过基于联邦机器学习的群体行为分析来检测/定位 5G 系统中的恶意异常
  • 批准号:
    567658-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Alliance Grants
SaTC: CORE: Small: Hardware-assisted Self-repairing in Decentralized Cloud Storage against Malicious Attacks
SaTC:CORE:小型:去中心化云存储中的硬件辅助自我修复抵御恶意攻击
  • 批准号:
    2225424
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
RINGS: Resilience of NextG Communication Systems to Malicious Modification Attacks
RINGS:NextG 通信系统对恶意修改攻击的恢复能力
  • 批准号:
    2148211
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Protecting Against Malicious Use of Image Diffusion Models
防止图像扩散模型的恶意使用
  • 批准号:
    2737559
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Studentship
Explainable Machine Learning Models For Predicting Malicious Uniform Resource Locators
用于预测恶意统一资源定位器的可解释机器学习模型
  • 批准号:
    575554-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: CISE-MSI: DP: SaTC: Ensemble of Countermeasures for Malicious Thermal Sensors Attacks
合作研究:CISE-MSI:DP:SaTC:恶意热传感器攻击对策组合
  • 批准号:
    2219678
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Detection of unknown new malicious sites by digital certificates used in TLS handshake and access avoidance
通过 TLS 握手和访问避免中使用的数字证书检测未知的新恶意站点
  • 批准号:
    22K11992
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了