STTR Phase I: Deep Transfer Learning Enabled Machine Vision Inspection and Its Applications in Exploration Geophysics
STTR 第一阶段:深度迁移学习支持的机器视觉检测及其在勘探地球物理中的应用
基本信息
- 批准号:1746824
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project will result from a direct benefit to the energy sector of the U.S. economy, since seismic exploration will play an increasingly important role in meeting increasing energy demands and maintaining healthy oil and gas output. The goal of this project is to develop a software package for automated pattern recognition that can be used by seismic processing companies to automatically pick geological features from seismic data. Seismic data volumes have grown exponentially over the last three decades as the seismic exploration industry increases its survey coverage. Manual picking and geological pattern identification jobs, which depend on visual inspection, are labor intensive and cannot keep up with the growth in data generated by seismic surveys. In this project, the company will develop a machine vision enabled picking and identification tool trained by a deep learning network. Lessons learned in training an efficient deep learning network for pattern recognition have wide applications in other areas such as medical image analysis. This project will support the training of both graduate and undergraduate students in the areas of seismic exploration, machine learning and high-performance computing. This Small Business Technology Transfer (STTR) Phase I project aims to develop a deep learning network model to recognize unique patterns embedded in seismic data, which patterns are characteristic of the associated geological structures. Specifically, the project will demonstrate the feasibility of delivering a machine vision enabled inspection tool to relieve domain experts from labor-intensive visual examination activities. Various automatic picking approaches currently exist, with differing degrees of success. Nonetheless, the uncertainty involved in these tools is still too high for them to be widely adopted by the industry. Recent advances in the area of deep learning make it possible to surpass human-level visual recognition performance in some applications. High performance deep learning network models, however, require a large amount of high quality training data. In this project, the company proposes to use a novel self-taught deep transfer learning approach to overcome the data shortage problem resulting from proprietary rights associated with the data. The new training workflow is adaptive to the domain of seismic data processing. It will also minimize the training effort and deliver a robust system with guaranteed performance for new and unseen datasets.
小企业技术转让(STTR)第一阶段项目的更广泛影响/商业潜力将直接受益于美国经济的能源部门,因为地震勘探将在满足日益增长的能源需求和保持健康的石油和天然气产量方面发挥越来越重要的作用。该项目的目标是开发一个自动模式识别软件包,地震处理公司可使用该软件包从地震数据中自动挑选地质特征。随着地震勘探行业扩大其勘测范围,地震数据量在过去三十年中呈指数级增长。人工拾取和地质模式识别工作依赖于目视检查,劳动密集型,无法跟上地震勘探产生的数据的增长。在这个项目中,该公司将开发一种由深度学习网络训练的机器视觉识别工具。在训练用于模式识别的高效深度学习网络方面所获得的经验教训在其他领域(如医学图像分析)中有着广泛的应用。该项目将支持地震勘探、机器学习和高性能计算领域的研究生和本科生培训。这个小企业技术转让(STTR)第一阶段项目旨在开发一个深度学习网络模型,以识别嵌入地震数据中的独特模式,这些模式是相关地质结构的特征。具体来说,该项目将证明提供机器视觉检测工具的可行性,以减轻领域专家的劳动密集型视觉检查活动。目前存在各种自动拣选方法,具有不同程度的成功。尽管如此,这些工具所涉及的不确定性仍然太高,无法被业界广泛采用。深度学习领域的最新进展使得在某些应用中超越人类水平的视觉识别性能成为可能。然而,高性能的深度学习网络模型需要大量高质量的训练数据。在这个项目中,该公司提出使用一种新的自学深度迁移学习方法来克服与数据相关的专有权导致的数据短缺问题。新的训练流程是适应于地震数据处理领域。它还将最大限度地减少训练工作,并为新的和看不见的数据集提供一个具有保证性能的强大系统。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Seismic data denoising by deep-residual networks
- DOI:10.1190/segam2018-2998619.1
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:Yuchen Jin;Xuqing Wu;Jiefu Chen;Zhu Han;Wenyi Hu
- 通讯作者:Yuchen Jin;Xuqing Wu;Jiefu Chen;Zhu Han;Wenyi Hu
Learn low-wavenumber information in FWI via deep inception-based convolutional networks
- DOI:10.1190/segam2018-2997901.1
- 发表时间:2018-08
- 期刊:
- 影响因子:0
- 作者:Yuchen Jin;Wenyi Hu;Xuqing Wu;Jiefu Chen
- 通讯作者:Yuchen Jin;Wenyi Hu;Xuqing Wu;Jiefu Chen
First-break automatic picking with deep semisupervised learning neural network
首次突破深度半监督学习神经网络自动拣选
- DOI:10.1190/segam2018-2998106.1
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Tsai, Kuo Chun;Hu, Wenyi;Wu, Xuqing;Chen, Jiefu;Han, Zhu
- 通讯作者:Han, Zhu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wenyi Hu其他文献
Daily Patterns of Accelerometer-Measured Movement Behaviors in Glaucoma Patients: Insights From UK Biobank Participants
青光眼患者加速度计测量的日常运动行为模式:来自英国生物银行参与者的见解
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Yixiong Yuan;Wenyi Hu;Xiaying Zhang;Grace Borchert;Wen Wang;Zhuoting Zhu;Mingguang He - 通讯作者:
Mingguang He
Secondary Cooling Analysis of AZ80Y Magnesium Alloy Slab during DC Casting by Modelling and Verification Based on Experiment
AZ80Y镁合金板坯直流连铸二次冷却的建模与实验验证分析
- DOI:
10.3390/cryst12111515 - 发表时间:
2022-10 - 期刊:
- 影响因子:2.7
- 作者:
Jian Hou;Qichi Le;Xingrui Chen;Wenyi Hu;Fangkun Ning;Ruizhen Guo;Xiaoqiang Yu;Li Fu - 通讯作者:
Li Fu
Effects of Ti, B and O on Weld Structure and Impact Toughness of High Heat Input Flux Cored Wire
Ti、B、O对高热输入药芯焊丝焊缝组织和冲击韧性的影响
- DOI:
10.1007/s12666-022-02704-4 - 发表时间:
2022-08 - 期刊:
- 影响因子:1.6
- 作者:
Fengyu Song;Laihong Zhou;Siyuan Liu;Yao Lingzhen;Hong Jin;Wenyi Hu - 通讯作者:
Wenyi Hu
Optimization method for broadband filter set with equal light efficiency in spectral imaging systems
光谱成像系统等光效宽带滤光片组优化方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:4.6
- 作者:
Zonglin Liang;Bo Zhang;Mingxu Piao;Keyan Dong;Yansong Song;Tianci Liu;Gangqi Yan;Yanbo Wang;Lei Zhang;Xinghang Li;Wenyi Hu;Chunsheng Xu;Shoufeng Tong - 通讯作者:
Shoufeng Tong
Correlation between heterogeneous micromechanical properties and fracture toughness in X80 girth weld
- DOI:
10.1016/j.mtcomm.2024.110589 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Ce Wang;Xinjie Di;Lianshuang Dai;Yanwen Ma;Jiawei Han;Xiaocong Yang;Shaohua Cui;Yang Yu;Wenyi Hu;Chengning Li - 通讯作者:
Chengning Li
Wenyi Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
SBIR Phase I: A Tunable Deep Ultraviolet (UV)-based Polyfluoroalkyl Substance (PFAS) Destruction Technology for Water Treatment
SBIR 第一阶段:用于水处理的可调谐深紫外线 (UV) 多氟烷基物质 (PFAS) 破坏技术
- 批准号:
2335229 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
POSE: Phase II: Building an Open-Source Ecosystem for Deep-Learning Hardware-Software Co-Design
POSE:第二阶段:构建深度学习软硬件协同设计的开源生态系统
- 批准号:
2303735 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: Single-shot X-ray Phase-contrast Imaging Using Deep Learning Approaches
SBIR 第一阶段:使用深度学习方法的单次 X 射线相衬成像
- 批准号:
2321552 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase II: A Wearable Non-Invasive Deep Tissue Thermometer
SBIR 第二阶段:可穿戴式非侵入式深层组织温度计
- 批准号:
2233629 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Advanced Deep Learning Technologies for Designing Humanized Antibody
SBIR 第一阶段:用于设计人源化抗体的先进深度学习技术
- 批准号:
2304624 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: A Deep-learning-based Chatbot and Personalized Recommendations: Application to Nutrition
SBIR 第一阶段:基于深度学习的聊天机器人和个性化建议:在营养领域的应用
- 批准号:
2213316 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: A Tool for In-situ Stress Measurement in Deep Downhole Environments
SBIR 第一阶段:深井环境中原位应力测量工具
- 批准号:
2126639 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
SBIR Phase I: An Easy RNA-Adenylation Method for Deep Sequencing of Picogram RNA Samples with High Resolution
SBIR 第一阶段:一种简单的 RNA 腺苷酸化方法,可对皮克级 RNA 样品进行高分辨率深度测序
- 批准号:
2151149 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
STTR Phase II: Probabilistic and Explainable Deep Learning for the Intuitive Predictive Maintenance of Industrial and Agricultural Equipment
STTR 第二阶段:用于工业和农业设备直观预测维护的概率和可解释深度学习
- 批准号:
2222630 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Cooperative Agreement
Deep learning-based detection in acute phase of acute encephalopathy for social implementation
基于深度学习的急性脑病急性期检测用于社会实施
- 批准号:
22K15904 - 财政年份:2022
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists