EAGER: Exploratory Research on Deriving Flight Information from Drone Imagery for Safety Compliance
EAGER:从无人机图像中获取飞行信息以确保安全合规的探索性研究
基本信息
- 批准号:1747535
- 负责人:
- 金额:$ 19.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recreational drone use is increasing rapidly in the United States. The Federal Aviation Administration (FAA) has established safety regulations such as flying too high, too fast, in restricted areas, etc. but there is no way to detect violations on a large scale. Further, drone users are unaware of or unconcerned about the regulations since they are self-enforced. Drone users upload large amounts of imagery to the Internet including that from flights which violate the safety regulations. This imagery is often the only evidence of the flights and so an interesting research question is whether image analysis can be used to detect violations from the flight imagery alone. The overarching goal of this project is an automated method to identify specific instances of violations in the large amounts of drone imagery available on the Internet. This would provide valuable information regarding the extent to which the regulations are being violated. It could also be used to pursue specific violators. The project will be done in collaboration with the University of California Center of Excellence on Unmanned Aerial Systems (UAS) Safety (http://uassafety.ucmerced.edu/). This Center provides expertise, support, and training for regulatory compliance, risk management, and the safe operation of UAS across the ten campus UC system.Detecting whether a flight is above the 400 ft limit specified by the FAA will serve as a proof-of-concept. A two-step process will first estimate the spatial resolution (i.e., meters per pixel) of the imagery and then use knowledge or estimates of the camera specifications to compute the height. If successful, the proof-of-concept can be extended to other violations such as flying too fast, above crowds, in poor visibility, etc. Estimating the spatial resolution and height of overhead imagery are novel problems, and the proposed approach is novel, challenging and risky. The project stands to make significant gains. There is currently no way to detect violations on a large scale and so this would be the first solution to this increasingly important problem. And, a broad range of drone image analysis problems beyond height estimation would benefit from knowing the spatial resolution. Results, datasets, and other project artifacts will be made available through the project website.
侦察无人机的使用在美国迅速增加。联邦航空管理局(FAA)制定了飞行过高、过快、在限制区域等安全规定,但没有办法大规模地发现违规行为。此外,无人机用户不知道或不关心这些规定,因为它们是自我执行的。 无人机用户将大量图像上传到互联网,包括违反安全规定的航班。这一图像往往是飞行的唯一证据,因此一个有趣的研究问题是,图像分析是否可以用于仅从飞行图像中发现违规行为。该项目的总体目标是一种自动化方法,用于识别互联网上大量无人机图像中的具体违规行为。这将提供关于违反条例程度的宝贵信息。它还可以用来追捕特定的违法者。该项目将与加州大学无人机系统(UAS)安全卓越中心(http://uassafety.ucmerced.edu/)合作完成。该中心提供专业知识,支持和培训,以确保法规遵从性,风险管理和UAS在十个校园UC系统中的安全运行。检测飞行是否超过FAA规定的400英尺限制将作为概念验证。两步过程将首先估计空间分辨率(即,每像素米),然后使用相机规格的知识或估计来计算高度。如果成功的话,概念验证可以扩展到其他违规行为,如飞行太快,人群以上,能见度差等估计的空间分辨率和高度的开销图像是新的问题,所提出的方法是新颖的,具有挑战性和风险。该项目有望取得重大成果。目前没有办法大规模地发现违规行为,因此这将是解决这一日益重要的问题的第一个办法。而且,除了高度估计之外的各种无人机图像分析问题都将受益于空间分辨率。 结果、数据集和其他项目工件将通过项目网站提供。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimating the Spatial Resolution of Very High-Resolution Overhead Imagery
- DOI:10.1145/3356471.3365241
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Haolin Liang;S. Newsam
- 通讯作者:Haolin Liang;S. Newsam
Estimating The Spatial Resolution of Overhead Imagery Using Convolutional Neural Networks
- DOI:10.1109/icip.2019.8802954
- 发表时间:2019-09
- 期刊:
- 影响因子:0
- 作者:Haolin Liang;S. Newsam
- 通讯作者:Haolin Liang;S. Newsam
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shawn Newsam其他文献
Metric Scaling for Dimensionality Reduction of Disordered Protein Dynamics
- DOI:
10.1016/j.bpj.2009.12.3456 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Joshua L. Phillips;Edmond Y. Lau;V.V. Krishnan;Michael Rexach;Shawn Newsam;Michael E. Colvin - 通讯作者:
Michael E. Colvin
One-class remote sensing classification: one-class vs. binary classifiers
- DOI:
https://doi.org/10.1080/01431161.2017.1416697 - 发表时间:
2018 - 期刊:
- 影响因子:
- 作者:
Xueqing Deng;Wenkai Li;Xiaoping Liu;Qinghua Guo;Shawn Newsam - 通讯作者:
Shawn Newsam
Probing the Conformation Landscape of the Unfolded State: Do Disordered and Unfolded Dynamics Differ?
- DOI:
10.1016/j.bpj.2010.12.1227 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Joshua L. Phillips;Edmond Y. Lau;Shawn Newsam;Michael E. Colvin - 通讯作者:
Michael E. Colvin
Shawn Newsam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shawn Newsam', 18)}}的其他基金
ACM SIGSPATIAL Conference 2016: Student Activities and U.S.-Based Students Support
2016 年 ACM SIGSPATIAL 会议:学生活动和美国学生支持
- 批准号:
1644662 - 财政年份:2016
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
ABI Development: Forest3D - an open source platform for lidar applications in forestry
ABI 开发:Forest3D - 林业激光雷达应用的开源平台
- 批准号:
1356077 - 财政年份:2014
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
CAREER: Social Multimedia as Volunteered Geographic Information: Crowdsourcing What-Is-Where on the Surface of the Earth Through Proximate Sensing
职业:社交多媒体作为自愿提供的地理信息:通过近距离感知众包地球表面的位置
- 批准号:
1150115 - 财政年份:2012
- 资助金额:
$ 19.94万 - 项目类别:
Continuing Grant
RUI: New Tools for Characterizing Protein Dynamics
RUI:表征蛋白质动力学的新工具
- 批准号:
0960480 - 财政年份:2010
- 资助金额:
$ 19.94万 - 项目类别:
Continuing Grant
III:Small:RUI:Integrating Image and Non-Image Geospatial Data
III:Small:RUI:集成图像和非图像地理空间数据
- 批准号:
0917069 - 财政年份:2009
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
相似海外基金
EAGER: IMPRESS-U: Exploratory Research on Generative Compression for Compressive Lidar
EAGER:IMPRESS-U:压缩激光雷达生成压缩的探索性研究
- 批准号:
2404740 - 财政年份:2024
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
EAGER: IMPRESS-U: Exploratory Research in Robust Machine Learning for Object Detection and Classification
EAGER:IMPRESS-U:用于对象检测和分类的鲁棒机器学习的探索性研究
- 批准号:
2415299 - 财政年份:2024
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: GASHES: Getz Antarctic Submarine Hydrothermal Vents Exploratory Study
合作研究:EAGER:GASHES:Getz 南极海底热液喷口探索性研究
- 批准号:
2303978 - 财政年份:2023
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: GASHES: Getz Antarctic Submarine Hydrothermal Vents Exploratory Study
合作研究:EAGER:GASHES:Getz 南极海底热液喷口探索性研究
- 批准号:
2303979 - 财政年份:2023
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
EAGER: Exploratory research on the dynamics of convergence in interdisciplinary teams
EAGER:跨学科团队融合动态的探索性研究
- 批准号:
2119916 - 财政年份:2021
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
EAGER: AI-DCL: Exploratory research on the use of AI at the intersection of homelessness and child maltreatment
EAGER:AI-DCL:关于在无家可归和虐待儿童问题上使用人工智能的探索性研究
- 批准号:
2127754 - 财政年份:2021
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
EAGER: Multi-level Research into I-Corps' Impact on Entrepreneurial Development: An Exploratory Study
EAGER:I-Corps 对创业发展影响的多层次研究:一项探索性研究
- 批准号:
1940249 - 财政年份:2019
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
EAGER: AI-DCL: Exploratory research on the use of AI at the intersection of homelessness and child maltreatment
EAGER:AI-DCL:关于在无家可归和虐待儿童问题上使用人工智能的探索性研究
- 批准号:
1927422 - 财政年份:2019
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
EAGER: Exploratory Research on DNS Modeling of Turbulent Heat Transfer in Porous Media
EAGER:多孔介质湍流传热 DNS 建模的探索性研究
- 批准号:
1642262 - 财政年份:2016
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant
EAGER: Exploratory Research on Rock Damage from Geologic and Induced Thermal Loading
EAGER:地质和热载荷引起的岩石损伤的探索性研究
- 批准号:
1550307 - 财政年份:2015
- 资助金额:
$ 19.94万 - 项目类别:
Standard Grant