EAGER: A Python Program Analysis Infrastructure to Facilitate Better Data Processing

EAGER:Python 程序分析基础设施,促进更好的数据处理

基本信息

  • 批准号:
    1748764
  • 负责人:
  • 金额:
    $ 14.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Python is the third most popular programming language, after C and Java,  and the most widely used language in Machine Learning and Data Science. Applications in Python are prone to human errors as much as those in other languages, or maybe more so due to the dynamic nature of Python. Therefore, tools to analyze, test, verify, and optimize Python applications are in a pressing need. Such tools are lagging or non-existent for Python. The root cause is the lack of infrastructure to support building practical and effective tools, which entails addressing the dynamic features of Python, such as dynamic typing, dynamic code loading/execution, and pervasive invocations to external library functions implemented in other languages. This project aims to explore the feasibility of building a Python program analysis infrastructure by developing two sample tools that rely upon a common set of infrastructural capabilities including the instrumentation, static analysis and symbolic analysis capabilities. The two sample tools are a data provenance tracking tool for machine learning applications and a bug finding tool to detect data format inconsistencies, which are the most dominant type of bugs in data processing. The provenance tool will demonstrate the importance of static analysis and program instrumentation, and the bug finding tool will demonstrate the importance of symbolic analysis. Both tools will illustrate the great benefits that can be brought to data scientists by advanced tools. In addition, they will illustrate that the aforementioned capabilities cannot be simply ported from existing infrastructures for other languages such as C and Java. The infrastructure will meet the pressing need of comprehensive tool building support for Python. A lot of cutting-edge synergistic research will be enabled across the CISE research community to serve data application programmers, data scientists and even end users.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Python是继C和Java之后第三大最受欢迎的编程语言,也是机器学习和数据科学中使用最广泛的语言。Python中的应用程序与其他语言中的应用程序一样容易出现人为错误,或者可能由于Python的动态特性而更容易出现人为错误。因此,迫切需要分析、测试、验证和优化Python应用程序的工具。这些工具对于Python来说是滞后的或不存在的。根本原因是缺乏支持构建实用和有效工具的基础设施,这需要解决Python的动态特性,例如动态类型,动态代码加载/执行,这个项目的目的是通过开发两个依赖于一组通用的基础设施能力,包括仪器,静态分析和符号分析能力。这两个示例工具是用于机器学习应用程序的数据来源跟踪工具和用于检测数据格式不一致的错误发现工具,这是数据处理中最主要的错误类型。起源工具将演示静态分析和程序插装的重要性,而错误发现工具将演示符号分析的重要性。这两种工具都将说明高级工具可以为数据科学家带来的巨大好处。此外,它们将说明上述功能不能简单地从其他语言(如C和Java)的现有基础设施中移植。该基础设施将满足对Python全面工具构建支持的迫切需求。许多尖端的协同研究将在整个CISE研究社区启用,以服务于数据应用程序员,数据科学家,甚至最终用户。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NIC: Detecting Adversarial Samples with Neural Network Invariant Checking
ABS: Scanning Neural Networks for Back-doors by Artificial Brain Stimulation
LAMP: data provenance for graph based machine learning algorithms through derivative computation
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiangyu Zhang其他文献

Fast Human Motion reconstruction from sparse inertial measurement units considering the human shape
考虑人体形状的稀疏惯性测量单元的快速人体运动重建
  • DOI:
    10.1038/s41467-024-46662-5
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Xuan Xiao;Jianjian Wang;P. Feng;Ao Gong;Xiangyu Zhang;Jianfu Zhang
  • 通讯作者:
    Jianfu Zhang
Self-supervised Adversarial Training of Monocular Depth Estimation against Physical-World Attacks.
针对物理世界攻击的单目深度估计的自监督对抗训练。
Kinematics and Mechanics analysis of trap-jaw ant Odontomachus monticola
陷阱颌蚁 Odontomachus monticola 运动学与力学分析
  • DOI:
    10.1088/1742-6596/986/1/012029
  • 发表时间:
    2018-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenteng Hao;Guang Yao;Xiangyu Zhang;Deyuan Zhang
  • 通讯作者:
    Deyuan Zhang
Environment-Resistant Organohydrogel-Based Sensor Enables Highly Sensitive Strain, Temperature, and Humidity Responses
基于有机水凝胶的耐环境传感器可实现高度灵敏的应变、温度和湿度响应
  • DOI:
    10.1021/acsami.2c02997
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Chengcheng Cai;Chiyu Wen;Weiqiang Zhao;Shu Tian;You Long;Xiangyu Zhang;Xiaojie Sui;Lei Zhang;Jing Yang
  • 通讯作者:
    Jing Yang
Effects of lemon essential oil and limonene on the progress of early caries:
柠檬精油和柠檬烯对早期龋齿进展的影响:
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Li Ma;Jing Chen;Hui Han;Peiwen Liu;Huijuan Wang;Xiangyu Zhang
  • 通讯作者:
    Xiangyu Zhang

Xiangyu Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiangyu Zhang', 18)}}的其他基金

SHF: Small: AI Model Debugging by Analyzing Model Internals with Python Program Analysis
SHF:小:通过 Python 程序分析分析模型内部结构进行 AI 模型调试
  • 批准号:
    1910300
  • 财政年份:
    2019
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
CSR: Small: Elastic and Robust Cloud Programming
CSR:小型:弹性且稳健的云编程
  • 批准号:
    1618923
  • 财政年份:
    2016
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
Travel Support For ACM SIGSOFT Symposium on the Foundations of Software Engineering (FSE 2014)
ACM SIGSOFT 软件工程基础研讨会 (FSE 2014) 的差旅支持
  • 批准号:
    1434610
  • 财政年份:
    2014
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Towards Automated Model Synthesis of Library and System Functions for Program-Environment Co-Analysis
SHF:小型:协作研究:面向程序-环境协同分析的库和系统功能的自动模型综合
  • 批准号:
    1320326
  • 财政年份:
    2013
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
SHF: Small: Reliable Data Processing by Dynamic Program Analysis
SHF:小型:通过动态程序分析进行可靠的数据处理
  • 批准号:
    1320444
  • 财政年份:
    2013
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
SHF: CSR: Small: Collaborative Research: Automated Model Synthesis of Library and System Functions for Program-Environment Co-Analysis
SHF:CSR:小型:协作研究:用于程序-环境协同分析的库和系统功能的自动模型合成
  • 批准号:
    1218993
  • 财政年份:
    2012
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
CSR: Small: Automated Software Failure Causal Path Computation
CSR:小:自动化软件故障因果路径计算
  • 批准号:
    0917007
  • 财政年份:
    2009
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
CAREER: Scalable Dynamic Program Reasoning
职业:可扩展的动态程序推理
  • 批准号:
    0845870
  • 财政年份:
    2009
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Continuing Grant
CSR-AES-RCS: Scalable and Efficient Dynamic Information Flow Tracking in Multithreaded Programs
CSR-AES-RCS:多线程程序中可扩展且高效的动态信息流跟踪
  • 批准号:
    0720516
  • 财政年份:
    2007
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
CRI: IAD An Advanced Infrastructure for Generation, Storage, and Analysis of Program Execution Traces
CRI:IAD 用于生成、存储和分析程序执行跟踪的高级基础设施
  • 批准号:
    0708464
  • 财政年份:
    2007
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant

相似国自然基金

基于python语言分析抖音平台药学科普现状与热门药学科普视频创作规律
  • 批准号:
    2024KP23
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于Python 数据挖掘技术构建冠心病“血瘀证前证”模型
  • 批准号:
    2021JJ40411
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Travel Grant: Conference Support for the Python in Heliophysics Community (PyHC) 2024 Summer School; Boulder, Colorado; May 20-24, 2024
旅费资助:太阳物理学社区 (PyHC) 2024 年 Python 暑期学校会议支持;
  • 批准号:
    2414651
  • 财政年份:
    2024
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
Pywr-WREW, a Water Resources model for England and Wales built in Python water resources simulation system
Pywr-WREW,用Python构建的英格兰和威尔士水资源模拟系统水资源模型
  • 批准号:
    ST/Y003802/1
  • 财政年份:
    2023
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Research Grant
LLM-based Learning Assistance for Python and Data Science Education
基于法学硕士的 Python 和数据科学教育学习援助
  • 批准号:
    23K11374
  • 财政年份:
    2023
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elements: Simplifying Compiled Python Packaging in the Sciences
元素:简化科学领域的已编译 Python 打包
  • 批准号:
    2209877
  • 财政年份:
    2022
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Standard Grant
The Burmese Python as a Model System for the Study of Metabolism and Organ Regeneration
缅甸蟒蛇作为代谢和器官再生研究的模型系统
  • 批准号:
    10594758
  • 财政年份:
    2022
  • 资助金额:
    $ 14.7万
  • 项目类别:
Enhancing SPACE, an innovative python package to account for spatial confounding used to estimate climate-sensitive events among older Medicare
增强 SPACE,这是一个创新的 Python 包,用于解决空间混杂问题,用于估计旧医疗保险中的气候敏感事件
  • 批准号:
    10839707
  • 财政年份:
    2022
  • 资助金额:
    $ 14.7万
  • 项目类别:
An innovative privacy management SaaS platform using Python, supervised learning and survey assessments that could save businesses up to £42K a year
使用 Python、监督学习和调查评估的创新隐私管理 SaaS 平台,每年可为企业节省高达 4.2 万英镑
  • 批准号:
    10047228
  • 财政年份:
    2022
  • 资助金额:
    $ 14.7万
  • 项目类别:
    Collaborative R&D
Creating Python Apps for Engineers
为工程师创建 Python 应用程序
  • 批准号:
    573328-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 14.7万
  • 项目类别:
    University Undergraduate Student Research Awards
Creating Python Apps for Engineers
为工程师创建 Python 应用程序
  • 批准号:
    573199-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 14.7万
  • 项目类别:
    University Undergraduate Student Research Awards
Python Analysis Library for Astrophysical Fluid Dynamics Simulations
用于天体物理流体动力学模拟的 Python 分析库
  • 批准号:
    572169-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 14.7万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了