CAREER: Multimodal Photodetectors

职业:多模态光电探测器

基本信息

  • 批准号:
    1749050
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-01 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

Machine intelligence has acquired unprecedented power with the recent progress of deep learning. When paired with sensory functions, autonomous machines with even rudimentary intelligence are expected to revolutionize the world's economy. Today, the vision that most machines have is based on traditional intensity pictures of a scene, just as humans use. This vision modality has many limitations: it is impaired by fog and rain, and it offers no spectral information other than combinations of three fundamental colors. These issues greatly limit the practical use of autonomous machines due to their stringent safety and reliability requirements. As a result, expensive optical instruments are being used to assist conventional vision in accomplishing special tasks. The proposed project has the potential to overcome the fundamental issues of traditional imaging technologies. It is based on a new type of light-sensing pixels that can measure multimodal information of light, such as incident angle, wavelength, and phase. They could offer unprecedented scene awareness for pervasive use in future machines.Light-sensitive pixels used in today's camera can only detect the intensity of light. The intensity information is sufficient for conventional applications such as photography, its limitations become apparent in advanced vision tasks. This project will develop a new class of photodetectors to measure multimodal information of light waves. They are compact and can form high density arrays as imaging chips. Although multimodal information can be measured through conventional optical components, such as lenses, prisms, and gratings, these components are expensive to integrate. They also degrade spatial resolution and decrease operational speed. This project uses novel nanostructures to exploit unique optical interactions. Multi-modal pixels will be designed using full wave simulation and fabricated with photo-lithography. The multimodal pixels are completely compatible with existing semiconductor fabrication facilities and could potentially be mass-produced at the cost of consumer electronics. The project will also develop new machine learning algorithms to exploit multimodal information to perform vision tasks far beyond those possible with today's intensity-only approach.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着深度学习的最新进展,机器智能获得了前所未有的力量。当与感官功能相结合时,即使具有基本智能的自主机器也有望彻底改变世界经济。如今,大多数机器的视觉都是基于场景的传统强度图片,就像人类使用的那样。这种视觉方式有很多局限性:它会受到雾和雨的影响,并且除了三种基本颜色的组合之外,它不提供光谱信息。由于其严格的安全性和可靠性要求,这些问题极大地限制了自主机器的实际使用。因此,昂贵的光学仪器被用来辅助传统视觉完成特殊任务。该项目有潜力克服传统成像技术的基本问题。它基于一种新型光传感像素,可以测量光的多模态信息,例如入射角、波长和相位。它们可以提供前所未有的场景感知,以便在未来的机器中普遍使用。当今相机中使用的光敏像素只能检测光的强度。强度信息足以满足摄影等传统应用的需求,但其局限性在高级视觉任务中变得明显。该项目将开发一种新型光电探测器来测量光波的多模态信息。它们结构紧凑,可以形成高密度阵列作为成像芯片。尽管多模态信息可以通过传统的光学元件(例如透镜、棱镜和光栅)进行测量,但这些元件的集成成本很高。它们还会降低空间分辨率并降低运行速度。该项目使用新颖的纳米结构来开发独特的光学相互作用。多模态像素将使用全波模拟进行设计,并通过光刻技术进行制造。多模态像素与现有的半导体制造设施完全兼容,并且有可能以消费电子产品的成本进行大规模生产。该项目还将开发新的机器学习算法,以利用多模态信息来执行远远超出当今仅强度方法所能完成的视觉任务。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single-shot on-chip spectral sensors based on photonic crystal slabs
  • DOI:
    10.1038/s41467-019-08994-5
  • 发表时间:
    2019-03-04
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Wang, Zhu;Yi, Soongyu;Yu, Zongfu
  • 通讯作者:
    Yu, Zongfu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zongfu Yu其他文献

Optimization of Nonlinear Nanophotonic Media for Artificial Neural Inference
用于人工神经推理的非线性纳米光子介质的优化
The Babar Collaboration
巴巴尔合作
  • DOI:
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Aubert;D. Boutigny;J. Gaillard;A. Hicheur;Y. Karyotakis;J. Lees;P. Robbe;V. Tisserand;A. Zghiche;A. Palano;A. Pompili;Jc Chen;N. Qi;G. Rong;Ping Wang;Y. Zhu;G. Eigen;I. Ofte;B. Stugu;G. Abrams;A. Borgland;A. Breon;D. Brown;J. Button‐Shafer;R. Cahn;E. Charles;M. Gill;A. Gritsan;Y. Groysman;R. Jacobsen;R. Kadel;J. Kadyk;L. Kerth;Y. Kolomensky;J. Kral;C. Leclerc;M. Levi;G. Lynch;L. Mir;P. Oddone;T. Orimoto;M. Pripstein;N. Roe;A. Romosan;M. Ronan;V. Shelkov;A. Telnov;W. Wenzel;T. Harrison;C. Hawkes;D. Knowles;S. O’Neale;R. Penny;A. Watson;N. Watson;T. Deppermann;K. Goetzen;H. Koch;B. Lewandowski;K. Peters;H. Schmuecker;M. Steinke;N. Barlow;W. Bhimji;J. Boyd;N. Chevalier;P. Clark;W. Cottingham;C. Mackay;F. Wilson;K. Abe;C. Hearty;T. Mattison;J. McKenna;D. Thiessen;S. Jolly;A. Mckemey;V. Blinov;A. Bukin;A. Buzykaev;V. Golubev;V. Ivanchenko;A. Korol;E. Kravchenko;A. Onuchin;S. Serednyakov;Y. Skovpen;A. Yushkov;D. Best;M. Chao;D. Kirkby;A. Lankford;M. Mandelkern;S. McMahon;D. Stoker;C. Buchanan;S. Chun;H. Hadavand;E. Hill;D. MacFarlane;H. Paar;S. Prell;S. Rahatlou;G. Raven;V. Sharma;J. Berryhill;C. Campagnari;B. Dahmes;P. Hart;N. Kuznetsova;S. Levy;O. Long;M. Mazur;J. Richman;W. Verkerke;J. Beringer;A. Eisner;M. Grothe;C. Heusch;W. Lockman;T. Pulliam;T. Schalk;R. Schmitz;B. Schumm;A. Seiden;M. Turri;W. Walkowiak;David C Williams;M. Wilson;E. Chen;G. Dubois;A. Dvoretskii;D. Hitlin;F. Porter;A. Ryd;A. Samuel;Shengxiang Yang;S. Jayatilleke;G. Mancinelli;B. Meadows;M. Sokoloff;T. Barillari;P. Bloom;W. Ford;U. Nauenberg;A. Olivas;P. Rankin;J. Roy;J. Smith;W. V. Hoek;L. Zhang;J. Harton;T. Hu;M. Krishnamurthy;A. Soffer;W. Toki;R. Wilson;J. Zhang;D. Altenburg;T. Brandt;J. Brose;T. Colberg;M. Dickopp;R. Dubitzky;A. Hauke;E. Mały;R. Müller;S. Otto;K. Schubert;R. Schwierz;B. Spaan;L. Wilden;D. Bernard;G. Bonneaud;F. Brochard;J. Cohen;S. Ferrag;S. T’Jampens;C. Thiebaux;G. Vasileiadis;M. Verderi;A. Anjomshoaa;R. Bernet;A. Khan;D. Lavin;F. Muheim;S. Playfer;J. Swain;J. Tinslay;M. Falbo;C. Borean;C. Bozzi;L. Piemontese;A. Sarti;E. Treadwell;F. Anulli;R. Baldini;A. Calcaterra;R. Sangro;D. Falciai;G. Finocchiaro;P. Patteri;I. Peruzzi;M. Piccolo;A. Zallo;S. Bagnasco;A. Buzzo;R. Contri;G. Crosetti;M. Vetere;M. Macrì;M. Monge;F. Pastore;C. Patrignani;E. Robutti;A. Santroni;S. Tosi;S. Bailey;M. Morii;R. Bartoldus;G. Grenier;U. Mallik;J. Cochran;H. Crawley;J. Lamsa;W. Meyer;E. Rosenberg;J. Yi;M. Davier;G. Grosdidier;A. Hocker;H. Lacker;S. Laplace;F. Diberder;V. Lepeltier;A. Lutz;T. Petersen;S. Plaszczynski;M. Schune;L. Tantôt;S. Trincaz;G. Wormser;R. Bionta;V. Brigljevic;D. Lange;K. Bibber;D. Wright;A. Bevan;J. Fry;E. Gabathuler;R. Gamet;M. George;M. Kay;D. Payne;R. Sloane;C. Touramanis;M. Aspinwall;D. Bowerman;P. Dauncey;U. Egede;I. Eschrich;G. Morton;J. Nash;P. Sanders;D. Smith;G. Taylor;J. Back;G. Bellodi;P. Dixon;P. Harrison;R. Potter;H. Shorthouse;P. Strother;P. Vidal;G. Cowan;H. Flaecher;S. George;M. Green;A. Kurup;C. Marker;T. Mcmahon;S. Ricciardi;F. Salvatore;G. Vaitsas;M. Winter;Deborah M. Brown;C. Davis;J. Allison;R. Barlow;A. Forti;F. Jackson;G. Lafferty;A. Lyon;N. Savvas;J. Weatherall;J. Williams;A. Farbin;A. Jawahery;V. Lillard;D. Roberts;J. Schieck;G. Blaylock;C. Dallapiccola;K. Flood;S. Hertzbach;R. Kofler;V. Koptchev;T. Moore;H. Staengle;S. Willocq;B. Brau;R. Cowan;G. Sciolla;F. Taylor;R. Yamamoto;M. Milek;P. Patel;F. Palombo;J. Bauer;L. Cremaldi;V. Eschenburg;R. Kroeger;J. Reidy;D. Sanders;D. Summers;C. Hast;P. Taras;H. Nicholson;N. Cavallo;G. Nardo;F. Fabozzi;C. Gatto;L. Lista;P. Paolucci;D. Piccolo;C. Sciacca;J. LoSecco;J. Alsmiller;T. Gabriel;J. Brau;R. Frey;M. Iwasaki;C. Potter;N. Sinev;D. Strom;E. Torrence;F. Colecchia;A. Dorigo;F. Galeazzi;M. Margoni;M. Morandin;M. Posocco;M. Rotondo;F. Simonetto;R. Stroili;C. Voci;M. Benayoun;H. Briand;J. Chauveau;P. David;C. D. Vaissière;L. Buono;O. Hamon;P. Leruste;J. Ocariz;M. Pivk;L. Roos;J. Stark;P. Manfredi;V. Re;V. Speziali;L. Gladney;Q. Guo;J. Panetta;C. Angelini;G. Batignani;S. Bettarini;M. Bondioli;F. Bucci;G. Calderini;E. Campagna;M. Carpinelli;F. Forti;M. Giorgi;A. Lusiani;G. Marchiori;F. Martinez;M. Morganti;N. Neri;E. Paoloni;M. Rama;G. Rizzo;F. Sandrelli;G. Triggiani;J. Walsh;M. Haire;D. Judd;K. Paick;L. Turnbull;D. Wagoner;J. Albert;N. Danielson;P. Elmer;C. Lu;V. Miftakov;J. Olsen;S. Schaffner;A. Smith;A. Tumanov;E. Varnes;F. Bellini;G. Cavoto;D. Re;R. Faccini;F. Ferrarotto;F. Ferroni;Emilio Leonardi;S. Morganti;G. Piredda;F. Tehrani;M. Serra;C. Voena;S. Christ;G. Wagner;R. Waldi;T. Adye;N. Groot;B. Franek;N. Geddes;G. Gopal;S. Xella;R. Aleksan;S. Emery;A. Gaidot;P. Giraud;G. D. Monchenault;W. Kozanecki;M. Langer;G. London;B. Mayer;G. Schott;B. Serfass;G. Vasseur;C. Yéche;M. Zito;M. Purohit;A. Weidemann;F. Yumiceva;I. Adam;D. Aston;N. Berger;A. Boyarski;M. Convery;D. Coupal;D. Dong;J. Dorfan;W. Dunwoodie;R. Field;T. Glanzman;S. Gowdy;E. Grauges;T. Haas;T. Hadig;V. Halyo;T. Himel;T. Hryn'ova;M. Huffer;W. Innes;C. Jessop;M. Kelsey;P. Kim;M. Kocian;U. Langenegger;D. Leith;S. Luitz;V. Luth;H. Lynch;H. Marsiske;S. Menke;R. Messner;D. Muller;C. O'grady;V. Ozcan;A. Perazzo;M. Perl;S. Petrak;H. Quinn;B. Ratcliff;S. Robertson;A. Roodman;A. Salnikov;T. Schietinger;R. Schindler;J. Schwiening;G. Simi;A. Snyder;A. Soha;S. Spanier;J. Stelzer;D. Su;M. Sullivan;H. Tanaka;J. Va’vra;S. Wagner;M. Weaver;A. Weinstein;W. Wisniewski;D. Wright;C. Young;P. Burchat;C. Cheng;T. Meyer;C. Roat;R. Henderson;W. Bugg;H. Cohn;J. Izen;I. Kitayama;X. Lou;F. Bianchi;M. Bona;D. Gamb;L. Bosisio;G. Ricca;S. Dittongo;L. Lanceri;P. Poropat;L. Vitale;G. Vuagnin;R. Panvini;S. Banerjee;C. Brown;D. Fortin;P. Jackson;R. Kowalewski;J. Roney;H. Band;S. Dasu;M. Datta;A. Eichenbaum;H. Hu;J. Johnson;R. Liu;F. Lodovico;A. Mohapatra;Y. Pan;R. Prepost;I. Scott;S. Sekula;J. V. Wimmersperg;Jie Wu;S. L. Wu;Zongfu Yu;H. Neal
  • 通讯作者:
    H. Neal
Controlling light with dynamic photonic structures
用动态光子结构控制光
Enhancement of quantum excitation transport by photonic nonreciprocity
通过光子非互易性增强量子激发传输
  • DOI:
    10.1103/physreva.106.033501
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    S. A. Hassani Gangaraj;Lei Ying;F. Monticone;Zongfu Yu
  • 通讯作者:
    Zongfu Yu
SAFT: Shotgun advancing front technique for massively parallel mesh generation on graphics processing unit
SAFT:Shotgun 先进的图形处理单元大规模并行网格生成前端技术

Zongfu Yu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zongfu Yu', 18)}}的其他基金

EAGER: Collaborative Research: Cold vapor generation beyond the input solar energy limit and its condensation using thermal radiation
EAGER:合作研究:超出输入太阳能限制的冷蒸汽生成及其利用热辐射的冷凝
  • 批准号:
    1932843
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Electrodynamic modeling of nanophotonic structures with two-level systems
EAGER:两级系统纳米光子结构的电动力学建模
  • 批准号:
    1641006
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Improving the voltage of solar cells using photon management
利用光子管理提高太阳能电池的电压
  • 批准号:
    1405201
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
  • 批准号:
    10103131
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    EU-Funded
Where Gesture Meets Grammar: Crosslinguistic Multimodal Communication
手势与语法的结合:跨语言多模式交流
  • 批准号:
    DP240102369
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Projects
Exploring the Mechanisms of Multimodal Metaphor Creation in Japanese Children
探索日本儿童多模态隐喻创造的机制
  • 批准号:
    24K16041
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
ZooCELL: Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data ..
ZooCELL:追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模态数据方面的多学科培训..
  • 批准号:
    EP/Y037049/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
Tracing the evolution of sensory cell types in animal diversity: multidisciplinary training in 3D cellular reconstruction, multimodal data analysis
追踪动物多样性中感觉细胞类型的进化:3D 细胞重建、多模式数据分析的多学科培训
  • 批准号:
    EP/Y037081/1
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Research Grant
mLMT: Multimodal Large Machine Translation Model
mLMT:多模态大型机器翻译模型
  • 批准号:
    24K20841
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Next Generation Tools For Genome-Centric Multimodal Data Integration In Personalised Cardiovascular Medicine
个性化心血管医学中以基因组为中心的多模式数据集成的下一代工具
  • 批准号:
    10104323
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    EU-Funded
Integrated multimodal microscopy facility for single molecule analysis
用于单分子分析的集成多模态显微镜设施
  • 批准号:
    LE240100086
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Towards Evolvable and Sustainable Multimodal Machine Learning
迈向可进化和可持续的多模式机器学习
  • 批准号:
    DE240100105
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Early Career Researcher Award
Class-Balanced Contrastive Learning for Multimodal Recognition
多模态识别的类平衡对比学习
  • 批准号:
    24K20831
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了