CAREER: Soil Microbial Ecology and Evolution in a Warming World

职业:变暖世界中的土壤微生物生态和进化

基本信息

  • 批准号:
    1749206
  • 负责人:
  • 金额:
    $ 95.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

Microorganisms are important components of every ecosystem. They virtually never live in isolation in nature; only as part of communities with other microbes. Soil microbial communities are major actors in the Earth's elemental cycles, and their response to environmental change can determine whether microbes help soil to retain more of compounds such as carbon, or whether it will be emitted in gaseous forms. As Earth's environment changes, so does the ability for soil to effectively store carbon, reducing the beneficial ecosystem services that soils provide, and releasing stored carbon gas into the atmosphere. In a 25-year long field experiment ongoing in a temperate forest in central Massachusetts, increases in temperature have resulted in a large loss of soil carbon as carbon dioxide gas. The loss is mostly due to microbes, with periods of soil carbon decay punctuated by changes in microbial community composition. This cyclic nature of soil carbon loss over decades suggests the existence of long-term microbial control over carbon in soil. In this experiment, increases in temperature have negatively affected soil fungi but not bacteria, suggesting that bacteria are adapting to these new environmental conditions, and that further adaptations to long-term environmental stress are possible. Over time, the quality of carbon compounds has been degraded, and examination of hundreds of bacterial isolates showed that the bacteria from chronically heated soils have an increased ability to metabolize degraded forms of carbon. Going forward, in this NSF CAREER project, research will examine the ecology and evolution of soil bacteria from the long-term warming experiment, in an effort to better predict the effect of environmental stress on terrestrial ecosystems. By doing much of the research in the classroom setting, this project will also help train the next generation of students in environmental microbiology. This research is designed to evaluate the central hypothesis that soil bacteria have acquired traits associated with adaptation to decades of chronic increases to soil temperature. The first aim is to directly measure the plasticity of in situ microbial community traits associated with declining soil organic matter quality and quantity over decades of chronic temperature stress. A laboratory incubation experiment will use stable isotope probing to measure temperature sensitivity of microbes associated with soils collected from a long-term warming experiment. The field experiment is an analysis of soils collected from before, during and after the heat is turned off for three months in the long-term study. Measures of different components of biomass and microbial products like enzymes and exopolysaccharides will be made and evaluated for changes due to long-term temperature increases. The second aim is to understand evolutionary adaptation of individual bacteria to long-term warming. Isolates will be screened for traits associated with oligotrophy (adaptation to low quantity substrate) and traits associated with degradation of complex carbon (adaptation to low quality substrate, including lignin analogs). The genomes of a subset of species with ecophysiology data will be sequenced for a study of trait evolution associated with oligotrophy or ability to degrade complex substrates. These organisms will also be part of a common garden experiment in an effort to link genomic features associated with long-term temperature stress to changes in fitness in soils. Altogether, these data will be used to estimate a rate of evolutionary adaptation for microbial parameters important to soil carbon modeling. This project will provide graduate student training in research and teaching, as well as undergraduate and high school student training in microbial physiology, ecology and genomics. Understanding bacterial adaptation might help to explain the non-linear pattern of soil C loss over decades of chronic temperature increase, and would define how environmental controls over the carbon cycle may act in a non-linear over longer time scales.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
微生物是每个生态系统的重要组成部分。 他们实际上从不与世隔绝地生活在大自然中。仅作为其他微生物群落的一部分。土壤微生物群落是地球元素循环的主要参与者,它们对环境变化的反应可以决定微生物是否帮助土壤保留更多的碳等化合物,或者是否以气态形式排放。随着地球环境的变化,土壤有效储存碳的能力也会发生变化,从而减少土壤提供的有益生态系统服务,并将储存的碳气体释放到大气中。在马萨诸塞州中部温带森林进行的一项长达 25 年的野外实验中,温度升高导致土壤碳以二氧化碳气体的形式大量流失。这种损失主要是由微生物造成的,土壤碳腐烂的时期会因微生物群落组成的变化而中断。几十年来土壤碳流失的这种循环性质表明微生物对土壤中碳的长期控制的存在。在这个实验中,温度升高对土壤真菌产生了负面影响,但对细菌没有产生负面影响,这表明细菌正在适应这些新的环境条件,并且进一步适应长期环境压力是可能的。 随着时间的推移,碳化合物的质量已经退化,对数百种细菌分离物的检查表明,来自长期加热土壤的细菌代谢降解形式的碳的能力增强。 展望未来,在这个 NSF CAREER 项目中,研究将通过长期变暖实验来研究土壤细菌的生态和进化,以更好地预测环境压力对陆地生态系统的影响。通过在课堂环境中进行大量研究,该项目还将有助于培训下一代环境微生物学学生。这项研究旨在评估一个中心假设,即土壤细菌已经获得了与适应数十年土壤温度慢性升高相关的特征。第一个目标是直接测量与几十年来慢性温度胁迫下土壤有机质质量和数量下降相关的原位微生物群落特征的可塑性。实验室孵化实验将使用稳定同位素探测来测量与长期变暖实验中收集的土壤相关的微生物的温度敏感性。田间实验是在长期研究中,对断热前、断热期间和断热后三个月收集的土壤进行分析。将测量生物质和微生物产品(如酶和胞外多糖)的不同成分,并评估因长期温度升高而产生的变化。第二个目标是了解单个细菌对长期变暖的进化适应。将筛选分离株的寡营养相关性状(适应低量底物)和与复合碳降解相关的性状(适应低质量底物,包括木质素类似物)。具有生态生理学数据的物种子集的基因组将被测序,以研究与寡营养或降解复杂底物的能力相关的性状进化。这些生物体也将成为常见花园实验的一部分,旨在将与长期温度胁迫相关的基因组特征与土壤适应性变化联系起来。总而言之,这些数据将用于估计对土壤碳建模很重要的微生物参数的进化适应率。该项目将为研究生提供研究和教学培训,以及微生物生理学、生态学和基因组学方面的本科生和高中生培训。了解细菌的适应可能有助于解释几十年来长期气温升高导致土壤碳损失的非线性模式,并定义对碳循环的环境控制如何在较长时间范围内以非线性方式发挥作用。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kristen DeAngelis其他文献

Kristen DeAngelis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kristen DeAngelis', 18)}}的其他基金

Collaborative Research: LTREB Renewal: Soil Warming and Forest Ecosystem Feedbacks to the Climate System
合作研究:LTREB更新:土壤变暖和森林生态系统对气候系统的反馈
  • 批准号:
    1949882
  • 财政年份:
    2020
  • 资助金额:
    $ 95.41万
  • 项目类别:
    Standard Grant

相似海外基金

NSF PRFB FY23: Effects of bioengineering on community assembly and ecosystem functioning in a soil microbial community
NSF PRFB FY23:生物工程对土壤微生物群落的群落组装和生态系统功能的影响
  • 批准号:
    2305961
  • 财政年份:
    2024
  • 资助金额:
    $ 95.41万
  • 项目类别:
    Fellowship Award
Collaborative Research: Linking microbial social interactions within soil aggregate communities to ecosystem C, N, and P cycling
合作研究:将土壤团聚群落内的微生物社会相互作用与生态系统 C、N 和 P 循环联系起来
  • 批准号:
    2346372
  • 财政年份:
    2024
  • 资助金额:
    $ 95.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking carbon preferences and competition to predict and test patterns of functional diversity in soil microbial communities
合作研究:将碳偏好和竞争联系起来,预测和测试土壤微生物群落功能多样性的模式
  • 批准号:
    2312302
  • 财政年份:
    2024
  • 资助金额:
    $ 95.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Linking microbial social interactions within soil aggregate communities to ecosystem C, N, and P cycling
合作研究:将土壤团聚群落内的微生物社会相互作用与生态系统 C、N 和 P 循环联系起来
  • 批准号:
    2346371
  • 财政年份:
    2024
  • 资助金额:
    $ 95.41万
  • 项目类别:
    Standard Grant
Relating microbial community structure to functioning in soil carbon sequestration and its controlling factors
微生物群落结构与土壤固碳功能及其控制因素的关系
  • 批准号:
    23K14056
  • 财政年份:
    2023
  • 资助金额:
    $ 95.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Assessing the effectiveness of affordable soil spectroscopic techniques for microbial diversity and abundance predictions on English wheat farms
评估经济适用的土壤光谱技术对英国小麦农场微生物多样性和丰度预测的有效性
  • 批准号:
    10055289
  • 财政年份:
    2023
  • 资助金额:
    $ 95.41万
  • 项目类别:
    Collaborative R&D
CAREER: How do rhizosphere associated microorganisms and plant host interact to regulate soil microbial processes?
职业:根际相关微生物和植物宿主如何相互作用来调节土壤微生物过程?
  • 批准号:
    2238633
  • 财政年份:
    2023
  • 资助金额:
    $ 95.41万
  • 项目类别:
    Continuing Grant
Physiological function of microbial rhodopsin in the regulation of plant growth by soil bacteria
微生物视紫红质在土壤细菌调控植物生长中的生理功能
  • 批准号:
    23K05007
  • 财政年份:
    2023
  • 资助金额:
    $ 95.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Networks of Influence: How soil microbial communities respond to land use
影响网络:土壤微生物群落如何响应土地利用
  • 批准号:
    2876506
  • 财政年份:
    2023
  • 资助金额:
    $ 95.41万
  • 项目类别:
    Studentship
The impacts of microbial and biochar amendments on soil formation processes and rhizosphere microbial communities on acidic mine tailings
微生物和生物炭改良剂对土壤形成过程和根际微生物群落对酸性尾矿的影响
  • 批准号:
    559869-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 95.41万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了