CAREER: Encrypted Computation
职业:加密计算
基本信息
- 批准号:1750795
- 负责人:
- 金额:$ 49.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Traditionally, the main goal of cryptography has been to secure data in transit over an insecure channel, by providing the digital analogue of a "lock box" that can only be unlocked by the intended recipient but whose contents cannot be observed or manipulated by anyone else. In recent years, new technologies and applications such as the rise of cloud computing are forcing us to fundamentally change our perspective. Data is not only vulnerable while in transit, but is increasingly being stored with third-party providers that have vast storage and computational resources and are expected to offer a rich array of tools and services over this data. Traditional cryptosystems could secure the data in the cloud but only at the cost of rendering it unusable and preventing the cloud from offering any functionality over it. The goal of this project is to design a new generation of cryptostosystems that go beyond the "lock box" paradigm and allow users to cryptographically protect their data in the cloud while still enabling the cloud to perform useful computations over it. More generally, the project studies the broad question of how to enable computation over cryptographically protected data with the best possible trade-offs between security and functionality.Specifically, the project focuses on three goals. The first goal is to construct provably secure program obfuscation schemes that can be used to encrypt a program in a way that hides its code but still allows us to evaluate it on arbitrary inputs. Such obfuscation schemes are known to be immensely powerful and would have countless applications throughout cryptography. Although this is likely to be a difficult goal and is one of the grand challenges in cryptography today, the project identifies several intermediate problems which may be closer within reach and may serve as useful stepping stones. The second goal is to improve numerous aspects of cryptosystems, such as fully homomorphic encryption and signatures. These schemes allow anyone to compute over encrypted/authenticated data and derive an encrypted/authenticated output without learning anything about the data itself. Although basic constructions of these primitives are known, they have many deficiencies that this project plans to address. Lastly, the project studies the additional challenges involved in computing over cryptographic data in the random-access machine model of computation, which best captures the efficiency requirements of real-world programs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统上,密码学的主要目标是通过提供“锁盒”的数字模拟来保护在不安全通道上传输的数据,该“锁盒”只能由预期的接收者解锁,但其内容不能被任何人观察或操纵。近年来,云计算等新技术和应用的兴起迫使我们从根本上改变了我们的观点。数据不仅在传输过程中容易受到攻击,而且越来越多地存储在第三方提供商那里,这些提供商拥有庞大的存储和计算资源,并有望为这些数据提供丰富的工具和服务。传统的密码系统可以保护云中的数据,但代价是使其无法使用,并阻止云在其上提供任何功能。该项目的目标是设计新一代的加密系统,超越“锁盒”范式,允许用户加密保护他们在云中的数据,同时仍然使云能够对其执行有用的计算。更一般地说,该项目研究了一个广泛的问题,即如何在安全性和功能之间取得最佳平衡的情况下,对受加密保护的数据进行计算。具体来说,该项目侧重于三个目标。第一个目标是构建可证明安全的程序混淆方案,该方案可用于加密程序,以隐藏其代码的方式,但仍然允许我们对任意输入进行评估。众所周知,这种混淆方案非常强大,并且在密码学中有无数的应用程序。虽然这可能是一个困难的目标,也是当今密码学的重大挑战之一,但该项目确定了几个中间问题,这些问题可能更接近于实现,并且可以作为有用的垫脚石。第二个目标是改进密码系统的许多方面,例如完全同态加密和签名。这些方案允许任何人对加密/身份验证的数据进行计算,并在不了解数据本身的情况下导出加密/身份验证的输出。虽然这些原语的基本结构是已知的,但它们有许多不足,本项目计划加以解决。最后,该项目研究了在随机存取机器计算模型中对加密数据进行计算所涉及的额外挑战,该模型最好地捕获了现实世界程序的效率要求。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extracting Randomness from Extractor-Dependent Sources
从依赖于提取器的源中提取随机性
- DOI:10.1007/978-3-030-45721-1_12
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Dodis, Yevgeniy;Vaikuntanathan, Vinod;Wichs, Daniel
- 通讯作者:Wichs, Daniel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Wichs其他文献
A system capable of verifiably and privately screening global DNA synthesis
能够以可验证且私密的方式筛选全球 DNA 合成的系统
- DOI:
10.48550/arxiv.2403.14023 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Carsten Baum;Jens Berlips;Walther Chen;Hongrui Cui;I. Damgård;Jiangbin Dong;K. Esvelt;Mingyu Gao;Dana W Gretton;Leonard Foner;Martin Kysel;Kaiyi Zhang;Juanru Li;Xiang Li;Omer Paneth;R. Rivest;Francesca Sage;Adi Shamir;Yue;Meicen Sun;V. Vaikuntanathan;Lynn Van Hauwe;Theia Vogel;Benjamin Weinstein;Yun Wang;Daniel Wichs;Stephen Wooster;Andrew C. Yao;Yu Yu;Haoling Zhang - 通讯作者:
Haoling Zhang
Incompressible Encodings
不可压缩编码
- DOI:
10.1007/978-3-030-56784-2_17 - 发表时间:
2020 - 期刊:
- 影响因子:11.1
- 作者:
T. Moran;Daniel Wichs - 通讯作者:
Daniel Wichs
Cryptographic Aspects of DNA Screening
DNA 筛查的密码学方面
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Carsten Baum;Hongrui Cui;Ivan Damg˚ard;K. Esvelt;M. Gao;Dana W Gretton;Omer Paneth;R. Rivest;V. Vaikuntanathan;Daniel Wichs;Andrew Yao;Yu Yu - 通讯作者:
Yu Yu
Universal Amplification of KDM Security: From 1-Key Circular to Multi-Key KDM
KDM 安全性的普遍增强:从 1-Key Circular 到 Multi-Key KDM
- DOI:
10.1007/978-3-031-38545-2_22 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Brent Waters;Daniel Wichs - 通讯作者:
Daniel Wichs
One-Time Computable Self-erasing Functions
一次性可计算自擦除函数
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Stefan Dziembowski;Tomasz Kazana;Daniel Wichs - 通讯作者:
Daniel Wichs
Daniel Wichs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Wichs', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Making Crypto Too BIG To Break
合作研究:SaTC:核心:媒介:让加密货币变得太大而无法破坏
- 批准号:
2055510 - 财政年份:2021
- 资助金额:
$ 49.8万 - 项目类别:
Standard Grant
TWC: TTP Option: Frontier: Collaborative: MACS: A Modular Approach to Cloud Security
TWC:TTP 选项:前沿:协作:MACS:云安全的模块化方法
- 批准号:
1413964 - 财政年份:2014
- 资助金额:
$ 49.8万 - 项目类别:
Continuing Grant
TWC: Medium: Collaborative: The Theory and Practice of Key Derivation
TWC:媒介:协作:密钥派生的理论与实践
- 批准号:
1314722 - 财政年份:2013
- 资助金额:
$ 49.8万 - 项目类别:
Standard Grant
EAGER: Collaborative: Holistic Security for Cloud Computing: Oblivious Computation
EAGER:协作:云计算的整体安全性:不经意的计算
- 批准号:
1347350 - 财政年份:2013
- 资助金额:
$ 49.8万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Accelerating General-Purpose Encrypted Computation on Diverse Hardware
职业:加速各种硬件上的通用加密计算
- 批准号:
2239334 - 财政年份:2023
- 资助金额:
$ 49.8万 - 项目类别:
Continuing Grant
Systems for Computation on Encrypted Data
加密数据计算系统
- 批准号:
RGPIN-2017-05849 - 财政年份:2021
- 资助金额:
$ 49.8万 - 项目类别:
Discovery Grants Program - Individual
Systems for Computation on Encrypted Data
加密数据计算系统
- 批准号:
RGPIN-2017-05849 - 财政年份:2020
- 资助金额:
$ 49.8万 - 项目类别:
Discovery Grants Program - Individual
SBIR Phase I: Enabling Computation on Encrypted Data on the Cloud and Beyond
SBIR 第一阶段:在云端及其他地方启用加密数据计算
- 批准号:
1938178 - 财政年份:2019
- 资助金额:
$ 49.8万 - 项目类别:
Standard Grant
Systems for Computation on Encrypted Data
加密数据计算系统
- 批准号:
DGDND-2017-00085 - 财政年份:2019
- 资助金额:
$ 49.8万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Systems for Computation on Encrypted Data
加密数据计算系统
- 批准号:
RGPIN-2017-05849 - 财政年份:2019
- 资助金额:
$ 49.8万 - 项目类别:
Discovery Grants Program - Individual
Systems for Computation on Encrypted Data
加密数据计算系统
- 批准号:
507908-2017 - 财政年份:2019
- 资助金额:
$ 49.8万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Systems for Computation on Encrypted Data
加密数据计算系统
- 批准号:
507908-2017 - 财政年份:2018
- 资助金额:
$ 49.8万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Systems for Computation on Encrypted Data
加密数据计算系统
- 批准号:
DGDND-2017-00085 - 财政年份:2018
- 资助金额:
$ 49.8万 - 项目类别:
DND/NSERC Discovery Grant Supplement
Systems for Computation on Encrypted Data
加密数据计算系统
- 批准号:
RGPIN-2017-05849 - 财政年份:2018
- 资助金额:
$ 49.8万 - 项目类别:
Discovery Grants Program - Individual