CAREER: Determining the structure and properties of cell re-engineered microenvironments using rheology in synthetic wound healing scaffolds

职业:利用合成伤口愈合支架的流变学确定细胞重新设计的微环境的结构和特性

基本信息

  • 批准号:
    1751057
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Human mesenchymal stem cells (hMSCs) play a critical role in wound healing by regulating inflammation after migrating to the wound site. One strategy to help wound healing is to implant a hydrogel containing isolated hMSCs directly into the wound site. The hydrogel provides structural integrity to the surrounding tissue. However, during wound healing, hMSCs remodel and degrade the hydrogel over time. These processes must be better understood to design hydrogels with the optimal properties for wound healing. This CAREER project will apply a combination of new and existing methods to characterize the region around cells during cell remodeling and degradation of the synthetic hydrogel material. The goal of the combined research and education effort is to: (1) use a novel interdisciplinary approach to provide new techniques to answer a critical problem in biomaterials and cell biology, (2) recruit and train a diverse work force and (3) educate a broad audience in biomaterials, materials characterization, and wound healing. The research will have a major impact on biomaterials design. These new materials have the potential to increase the rate of wound healing and prevent development of chronic wounds. In addition, the principle investigator will recruit, train and educate a broad audience. This will be done by: (i) outreach to the public at the Da Vinci Science Center in Allentown, PA, (ii) mentoring of middle and high school students and (iii) mentoring and training of undergraduate and graduate students.The overall goal of this work is to characterize the spatial and temporal rheological evolution of a synthetic hydrogel during cell-mediated degradation to determine viability as an implantable wound healing scaffold. The physical microenvironment is hypothesized to control hMSC degradation strategies during cell migration to efficiently deliver hMSCs to the wound and control material degradation. To test this, the research includes a) characterizing hMSC degradation strategies in homogenous hydrogels that mimic the stiffness of native tissues, b) determining the change in response to an interface in stiffness, and c) determining how gradients in scaffold stiffness change hMSC-mediated degradation and direct motility to increase cell delivery and material integrity. hMSCs will be encapsulated in 3D in a well-established photopolymerizable poly(ethylene glycol)-peptide hydrogel. The peptide cross-linker in this material is degraded by cell-secreted enzymes. Dynamic scaffold properties will be measured with bulk rheology and microrheology. Multiple particle tracking microrheology (MPT) will measure the spatio-temporal degradation profile created in the scaffold by encapsulated hMSCs. These measurements will determine the unique degradation strategies hMSCs use in response to changes in their microenvironment. Bulk rheology will quantify the change in material integrity as hMSCs permanently degrade the synthetic scaffold. Using this knowledge, the viability of these materials as implantable wound healing scaffolds and the microenvironments that most efficiently deliver hMSCs to an injury while providing structure to the surrounding tissue will be determined. The research outcomes will be: i) identification of the microenvironment cells engineer during motility in response to homogeneous and heterogeneous environments in the scaffold and ii) determination of microenvironments that increase cell delivery and material integrity.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人骨髓间充质干细胞(hMSCs)迁移到伤口部位后,通过调节炎症在伤口愈合中发挥关键作用。 帮助伤口愈合的一种策略是将含有分离的hMSC的水凝胶直接植入伤口部位。 水凝胶为周围组织提供结构完整性。 然而,在伤口愈合过程中,hMSC随着时间的推移重塑和降解水凝胶。 必须更好地理解这些过程,以设计具有最佳伤口愈合性能的水凝胶。该CAREER项目将采用新方法和现有方法的组合来表征合成水凝胶材料在细胞重塑和降解过程中细胞周围的区域。研究和教育工作相结合的目标是:(1)使用新型跨学科方法提供新技术来回答生物材料和细胞生物学中的关键问题,(2)招募和培训多元化的劳动力和(3)教育生物材料、材料表征和伤口愈合方面的广泛受众。该研究将对生物材料设计产生重大影响。这些新材料有可能提高伤口愈合速度并防止慢性伤口的发展。此外,主要调查员将招募、培训和教育广大受众。这将通过以下方式实现:(i)在宾夕法尼亚州阿伦敦的达芬奇科学中心向公众推广,(ii)指导初中和高中学生,(iii)指导和培训本科生和研究生。这项工作的总体目标是表征合成水凝胶在细胞介导的降解过程中的时空流变学演变,以确定作为可植入伤口愈合支架的可行性。假设物理微环境在细胞迁移期间控制hMSC降解策略,以有效地将hMSC递送至伤口并控制材料降解。为了测试这一点,该研究包括a)表征模拟天然组织硬度的均质水凝胶中的hMSC降解策略,B)确定响应于硬度界面的变化,以及c)确定支架硬度梯度如何改变hMSC介导的降解和直接运动性以增加细胞递送和材料完整性。将hMSC以3D形式包封在公认的可光聚合的聚(乙二醇)-肽水凝胶中。该材料中的肽交联剂被细胞分泌的酶降解。动态支架性能将用本体流变学和微观流变学测量。多粒子跟踪微流变学(MPT)将测量由包封的hMSC在支架中产生的时空降解曲线。这些测量将确定hMSC响应其微环境变化所使用的独特降解策略。随着hMSC永久降解合成支架,本体流变学将量化材料完整性的变化。利用这些知识,将确定这些材料作为植入式伤口愈合支架的可行性以及最有效地将hMSC输送到损伤部位同时为周围组织提供结构的微环境。研究成果将是:i)识别在运动过程中响应支架中均匀和非均匀环境的微环境细胞工程和ii)确定增加细胞输送和材料完整性的微环境。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Chemical engineering ‘on-a-chip’: Capturing the integrated scope of chemical engineering through STEM outreach
化学工程“片上”:通过 STEM 推广了解化学工程的综合范围
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Schultz, Kelly M.;Snyder, Mark A.
  • 通讯作者:
    Snyder, Mark A.
Characterizing Nonuniform Hydrogel Elastic Moduli Using Autofluorescence
使用自发荧光表征不均匀水凝胶弹性模量
  • DOI:
    10.1021/acs.macromol.2c00241
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    McGlynn, John A.;Schultz, Kelly M.
  • 通讯作者:
    Schultz, Kelly M.
Multiple particle tracking microrheological characterization: Fundamentals, emerging techniques and applications
  • DOI:
    10.1063/5.0006122
  • 发表时间:
    2020-05-29
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    McGlynn, John A.;Wu, Nan;Schultz, Kelly M.
  • 通讯作者:
    Schultz, Kelly M.
Multiple particle tracking microrheology measured using bi-disperse probe diameters
使用双分散探针直径测量多粒子跟踪微流变学
  • DOI:
    10.1039/c8sm01098f
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Wehrman, Matthew D.;Lindberg, Seth;Schultz, Kelly M.
  • 通讯作者:
    Schultz, Kelly M.
Measuring human mesenchymal stem cell remodeling in hydrogels with a step-change in elastic modulus
通过弹性模量的阶跃变化测量水凝胶中人间充质干细胞的重塑
  • DOI:
    10.1039/d2sm00717g
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    McGlynn, John A.;Schultz, Kelly M.
  • 通讯作者:
    Schultz, Kelly M.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kelly Schultz其他文献

Kelly Schultz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kelly Schultz', 18)}}的其他基金

GOALI: Determination of the Structure and Properties of Microfibrillated Cellulose during Dynamic Phase Transitions
目标:动态相变期间微原纤化纤维素的结构和性能的测定
  • 批准号:
    1933251
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似海外基金

Mechanisms of Juvenile Neurogenesis and Post-Stroke Recovery: Determining the Role of Age-Associated Neuroimmune Interactions
青少年神经发生和中风后恢复的机制:确定与年龄相关的神经免疫相互作用的作用
  • 批准号:
    10637874
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Determining the ototoxic potential of COVID-19 therapeutics using machine learning and in vivo approaches
使用机器学习和体内方法确定 COVID-19 疗法的耳毒性潜力
  • 批准号:
    10732745
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Determining the molecular mechanisms of HIV-1 maturation
确定 HIV-1 成熟的分子机制
  • 批准号:
    10750083
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Collaborative Research: Determining climate related changes in water mass structure, paleoventilation, and paleocirculation in the Southeast Indian and Southern Oceans
合作研究:确定东南印度洋和南大洋与气候相关的水团结构、古通风和古环流变化
  • 批准号:
    2231146
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Determining the ultrastructural differences between dually and singly innervated dendritic spines and their changes following glutamate excitotoxicity using Cryo-Electron Tomography
使用冷冻电子断层扫描确定双重和单神经支配的树突棘之间的超微结构差异及其在谷氨酸兴奋性毒性后的变化
  • 批准号:
    10679214
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Determining the Role of Bacterial Products on Neuronal Localization and Function in a Symbiotic Organ
确定细菌产物对共生器官神经元定位和功能的作用
  • 批准号:
    10647940
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Determining the circuits and signals of sleep dysfunction in Parkinson's disease through chronic intracranial recordings and closed-loop Deep Brain Stimulation
通过慢性颅内记录和闭环深部脑刺激确定帕金森病睡眠功能障碍的回路和信号
  • 批准号:
    10630021
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
The role of ATP13A5 ATPase in determining blood-brain pericyte functions
ATP13A5 ATP酶在确定血脑周细胞功能中的作用
  • 批准号:
    10814088
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
A universal approach for determining three-dimensional RNA structures
确定三维 RNA 结构的通用方法
  • 批准号:
    10724848
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Determining pathogenic PrPC-induced signaling pathways in human iPSC-induced neurons
确定人 iPSC 诱导神经元中致病性 PrPC 诱导的信号通路
  • 批准号:
    10791127
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了