CAREER: Leveraging the Dielectric Waveguide Properties of the Human Body for Ultra-Efficient "Unawearables"
职业:利用人体的介电波导特性实现超高效的“不可穿戴设备”
基本信息
- 批准号:1751293
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-01-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The primary objective of this research is to dramatically reduce the power needed to communicate information around the body in order to help enable the next generation of wearable medical and wellness devices. Current wearables tend to utilize Bluetooth for communication around the body, which despite operating fairly reliably, is extremely energy inefficient, resulting in poor device battery life. A conventional Bluetooth device found on a wearable medical patch, for example, will broadcast radio waves in all directions, with as little as 0.000001% of the transmitted energy received by the radio on your smartwatch or smartphone, in part due to large absorption of electromagnetic energy by the human body at 2.4GHz. To improve the efficiency of wireless communication, the proposed research endeavors to leverage the human body itself as a communication channel. Specifically, rather than broadcasting information in all directions, which has severe energy inefficiencies and privacy/security concerns, the proposed approach utilizes wired coils placed within the band of a smartwatch, in a wearable patch, or on a smartphone, to generate small magnetic fields that safely and efficiently pass through the body. The electromagnetic properties of the human body at the much lower targeted frequencies (10-50MHz) are more favorable than at 2.4GHz, enabling efficiencies as high as 10%, with rapid fall-off away from the body, for inherently more efficient, secure, and private communications. The generated magnetic fields are of lower strength than Earth's natural magnetic field, and orders of magnitude less than Bluetooth or mobile phones, and are thus considered to be safe. To demonstrate the effectiveness of this technique, several coil, circuit, and system prototypes will be developed and tested for a variety of healthcare-related applications such as in hearing aids and wearable glucose monitors. The program also includes an education plan that is synergistic with the research goals, including outreach to K-12 and underrepresented students in engineering. The proposed communication system specifically leverages the high dielectric constant of biological tissue to attain high efficiency. Despite being largely magnetically-inert, magnetic energy delivered to the body at 10-50MHz has, due to the high dielectric constant of tissue, enhanced near- and mid-field components, while also generating far-field components that totally-internally reflect to create a human-body-based dielectric waveguide-like structure. The objectives of this CAREER proposal are to develop physical models that describe this behavior, optimize coils for low trans-body path loss, and design, fabricate, and test integrated circuits to communicate across the body at high efficiency. Successful development will enable body-area networking transceivers that operate at much higher efficiency than conventional techniques, enabling wearable devices that are smaller and have longer battery life than before, thereby opening up new avenues and applications in healthcare, wellness, and personal infotainment systems. To help broaden participation of members of underrepresented groups in STEM fields, related research results will be discussed at K-12 outreach events, including, for example, the creation of interactive body-area network communication experiences at summer technology camps.
这项研究的主要目标是大幅降低在身体周围传递信息所需的功率,以帮助实现下一代可穿戴医疗和健康设备。目前的可穿戴设备倾向于利用蓝牙在身体周围进行通信,尽管操作相当可靠,但能源效率极低,导致设备电池寿命很差。例如,在可穿戴医疗贴片上发现的传统蓝牙设备将向各个方向广播无线电波,智能手表或智能手机上的无线电接收的传输能量只有0.000001%,部分原因是人体在2.4GHz时吸收了大量电磁能量。为了提高无线通信的效率,拟议的研究努力利用人体本身作为通信通道。具体而言,所提出的方法不是在所有方向上广播信息,这具有严重的能量效率低下和隐私/安全问题,而是利用放置在智能手表的带内、可穿戴贴片中或智能手机上的有线线圈来产生安全有效地穿过身体的小磁场。人体在低得多的目标频率(10- 50 MHz)下的电磁特性比2.4GHz更有利,使效率高达10%,并从身体迅速下降,从而实现本质上更高效,安全和私密的通信。所产生的磁场强度低于地球的自然磁场,并且数量级低于蓝牙或移动的电话,因此被认为是安全的。为了证明这种技术的有效性,将开发和测试几个线圈,电路和系统原型,用于各种医疗保健相关的应用,如助听器和可穿戴葡萄糖监测仪。该计划还包括一个与研究目标协同的教育计划,包括与K-12和工程专业代表性不足的学生的联系。所提出的通信系统特别利用生物组织的高介电常数来获得高效率。尽管在很大程度上是磁惰性的,但由于组织的高介电常数,以10- 50 MHz递送到身体的磁能具有增强的近场和中场分量,同时还产生全内反射的远场分量以创建基于人体的介电波导状结构。本CAREER提案的目标是开发描述这种行为的物理模型,优化线圈以降低跨体路径损耗,并设计、制造和测试集成电路,以高效率跨体通信。成功的开发将使身体区域网络收发器能够以比传统技术高得多的效率运行,使可穿戴设备比以前更小,电池寿命更长,从而为医疗保健,健康和个人信息娱乐系统开辟新的途径和应用。 为了帮助扩大STEM领域代表性不足的群体成员的参与,相关研究成果将在K-12外展活动中进行讨论,包括例如在夏季技术夏令营中创建交互式身体区域网络通信体验。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Analysis of Coil Coupling in the Near-Field/ Far-Field Hybrid Region
- DOI:10.1109/lawp.2023.3263394
- 发表时间:2023-07
- 期刊:
- 影响因子:4.2
- 作者:Erda Wen;D. Sievenpiper;P. Mercier
- 通讯作者:Erda Wen;D. Sievenpiper;P. Mercier
A GMSK/PAM4 Multichannel Magnetic Human Body Communication Transceiver
GMSK/PAM4多通道磁性人体通信收发器
- DOI:10.1109/lssc.2022.3158691
- 发表时间:2022
- 期刊:
- 影响因子:2.7
- 作者:Meng, Miao;Kooshkaki, Hossein Rahmanian;Wang, Xiaoyang;Kuo, Shih-Kai;Wen, Erda;Mercier, Patrick P.
- 通讯作者:Mercier, Patrick P.
Channel Characterization of Magnetic Human Body Communication
- DOI:10.1109/tbme.2021.3101766
- 发表时间:2022-02-01
- 期刊:
- 影响因子:4.6
- 作者:Wen, Erda;Sievenpiper, Daniel F.;Mercier, Patrick P.
- 通讯作者:Mercier, Patrick P.
A Sub-10-pJ/bit 5-Mb/s Magnetic Human Body Communication Transceiver
- DOI:10.1109/jssc.2019.2935549
- 发表时间:2019-11-01
- 期刊:
- 影响因子:5.4
- 作者:Park, Jiwoong;Mercier, Patrick P.
- 通讯作者:Mercier, Patrick P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick Mercier其他文献
Automatically Capturing Key Features for Predicting Superionic Conductivity of Solid-State Electrolytes Using a Neural Network
使用神经网络自动捕获预测固态电解质超离子电导率的关键特征
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:6.4
- 作者:
Zhuole Lu;Parvin Adeli;Chae;Ming Jiang;Jacob Rempel;Zhi Wen Chen;Shwetank Yadav;Patrick Mercier;Y. Abu;C. V. Singh - 通讯作者:
C. V. Singh
Ultra low-power, wearable, accelerated shallow-learning fall detection for elderly at-risk persons
针对老年高危人群的超低功耗、可穿戴、加速浅层学习跌倒检测
- DOI:
10.1016/j.smhl.2024.100498 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jingxiao Tian;Patrick Mercier;Christopher Paolini - 通讯作者:
Christopher Paolini
Nearly five-year continuous atmospheric measurements of black carbon over a suburban area in central France
- DOI:
10.1016/j.scitotenv.2022.159905 - 发表时间:
2023 - 期刊:
- 影响因子:9.8
- 作者:
El. Mehdi EL. Baramoussi;Yangang Ren;Chaoyang Xue;Ibrahim Ouchen;Véronique Daële;Patrick Mercier;Christophe Chalumeau;Frédéric L.E. Fur;Patrice Colin;Abderrazak Yahyaoui;Oliver Favez;Abdelwahid Mellouki - 通讯作者:
Abdelwahid Mellouki
Patrick Mercier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick Mercier', 18)}}的其他基金
IUCRC Phase I University of California, San Diego: Center for Power Management Integration (PMIC)
IUCRC 第一阶段加州大学圣地亚哥分校:电源管理集成中心 (PMIC)
- 批准号:
2052809 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
RAPID:COVID-19: A Low-Cost Disposable Wearable for Real-Time Tracking of the Risk of and Recovery to COVID-19, Influenza, and other Viral Infections
RAPID:COVID-19:一种低成本一次性可穿戴设备,用于实时跟踪 COVID-19、流感和其他病毒感染的风险和恢复情况
- 批准号:
2028311 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似海外基金
Building recovery and resilience in severe mental illness: Leveraging the role of social determinants in illness trajectories and interventions
建立严重精神疾病的康复和复原力:利用社会决定因素在疾病轨迹和干预措施中的作用
- 批准号:
MR/Z503514/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
- 批准号:
2312089 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Leveraging Plastic Deformation Mechanisms Interactions in Metallic Materials to Access Extraordinary Fatigue Strength.
职业:利用金属材料中的塑性变形机制相互作用来获得非凡的疲劳强度。
- 批准号:
2338346 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
- 批准号:
2330957 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
HSI Implementation and Evaluation Project: Leveraging Social Psychology Interventions to Promote First Year STEM Persistence
HSI 实施和评估项目:利用社会心理学干预措施促进第一年 STEM 的坚持
- 批准号:
2345273 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Leveraging the interactions between carbon nanomaterials and DNA molecules for mitigating antibiotic resistance
合作研究:利用碳纳米材料和 DNA 分子之间的相互作用来减轻抗生素耐药性
- 批准号:
2307222 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Leveraging Data Science & Policy to Promote Sustainable Development Via Resource Recovery
职业:利用数据科学
- 批准号:
2339025 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant