CAREER: Quantitative Tools to Measure the Spatiotemporal Dynamics of Protein Signaling Complexes

职业:测量蛋白质信号复合物时空动态的定量工具

基本信息

  • 批准号:
    1752366
  • 负责人:
  • 金额:
    $ 54.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-03-15 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

Though more than 10 million people in the USA suffer from learning and memory disorders, the underlying causes of many of these disorders are still not clear. Most of these disorders arise due to disruptions in the regulation of protein networks (called protein signaling complexes) that control the strength of the connections (called synapses) that allow neurons to communicate with each other. Using sophisticated computer modeling and super-resolution microscopes, this project seeks to produce significant new molecular-level understanding of the dynamic organization, in both time and space, of these critical protein complexes. This understanding could lead to the design of new treatments for learning and memory disorders. Furthermore, the research studies planned will provide current and future biomedical engineering students with the multidisciplinary training required to enter careers in the rapidly growing fields of biotechnology and biomedical engineering. Student skills will be enhanced by participation in cross-disciplinary engineering design teams, expanded interdisciplinary research opportunities for undergraduates and graduate students, and opportunities to engage in entrepreneurial activities. The proposed educational curriculum and outreach activities are expected to increase public awareness of the application of STEM disciplines to meet current national health needs.The project's objective is to quantitatively describe the spatiotemporal dynamics of protein signaling complexes that determine the strength of neuronal synaptic connections, which are mediated by two glutamate-gated ion channels (AMPAR receptors and NMDA receptors). The objective is driven by the rationale that elucidating the mechanisms of protein signaling complex formation and regulation is an important step toward identifying targets for pharmaceutical intervention in learning and memory disorders. The Research Plan is organized around 3 aims: 1) Experimentally measure protein-protein interaction dynamics of a large number of interacting proteins through literature mining and developing a new method to rapidly measure protein binding kinetics; 2) Construct computational models of NMDAR and AMPAR regulation to quantify the impact of various mechanisms on NMDA and AMPAR localization and identify parameters that need to be further characterized; 3) Quantitatively measure protein complex formation using labeling methods in conjunction with standard immune-labeling techniques to image protein complexes with single molecule localization super-resolution microscopy. The Educational Plan is organized around 2 aims: 1) Create a set of inquiry-based learning modules to teach fundamental principles of transport to K-12 students that will be presented to students in rural schools in Indiana and Ohio and the urban Purdue Polytechnic High School; 2) Create a multidisciplinary educational pathway for current and future Purdue students to obtain careers in fields of biomolecular detection, biotechnology, and technology development by designing and implementing new courses for undergraduate and graduate students that focus on biomolecular engineering and transport phenomena with special emphasis on the intersection of engineering, chemistry, and biology and developing expanded research and entrepreneurship activities that provide experiential learning opportunities that supplement skill attainment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管美国有超过1000万人患有学习和记忆障碍,但其中许多疾病的根本原因仍然不清楚。 这些疾病中的大多数是由于蛋白质网络(称为蛋白质信号复合物)的调节中断而出现的,蛋白质网络控制着允许神经元相互通信的连接(称为突触)的强度。 利用先进的计算机建模和超分辨率显微镜,该项目旨在对这些关键蛋白质复合物在时间和空间上的动态组织产生重要的新分子水平的理解。这种理解可能会导致设计新的治疗学习和记忆障碍的方法。 此外,计划的研究将为当前和未来的生物医学工程学生提供进入快速发展的生物技术和生物医学工程领域所需的多学科培训。学生的技能将通过参与跨学科的工程设计团队,扩大本科生和研究生的跨学科研究机会,以及参与创业活动的机会来提高。预计拟议的教育课程和外联活动将提高公众对应用科学、技术、工程和数学学科满足当前国家卫生需求的认识,该项目的目标是定量描述蛋白质信号复合物的时空动态,这些复合物决定神经元突触连接的强度,而神经元突触连接由两个谷氨酸门控离子通道(AMPAR受体和NMDA受体)介导。 该目标是由阐明蛋白质信号传导复合物形成和调节的机制是确定学习和记忆障碍药物干预靶点的重要一步的基本原理驱动的。 本研究计划围绕3个目标展开:1)通过文献挖掘,开发快速测定蛋白质结合动力学的新方法,实验测定大量相互作用蛋白质的蛋白质-蛋白质相互作用动力学; 2)构建NMDAR和AMPAR调控的计算模型,量化各种机制对NMDA和AMPAR定位的影响,并确定需要进一步表征的参数; 3)使用标记方法结合标准免疫标记技术定量测量蛋白质复合物的形成,以用单分子定位超分辨率显微镜对蛋白质复合物进行成像。该教育计划围绕两个目标组织:1)创建一套基于探究的学习模块,向K-12学生教授交通的基本原则,并将向印第安纳州和俄亥俄州农村学校以及城市普渡理工高中的学生提供这些模块; 2)为当前和未来的普渡学生创建一个多学科的教育途径,以获得生物分子检测,生物技术,和技术开发,为本科生和研究生设计和实施新课程,重点是生物分子工程和运输现象,特别强调工程,化学,该奖项反映了NSF的法定使命,并被认为值得支持通过使用基金会的知识价值和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Impact of Integrating a Flipped Lecture in a Biotransport Laboratory Course on Student Learning and Engagement
将翻转讲座融入生物运输实验室课程对学生学习和参与的影响
Mechanistic Computational Modeling of Implantable, Bioresorbable Drug Release Systems
  • DOI:
    10.1002/adma.202301698
  • 发表时间:
    2023-09-08
  • 期刊:
  • 影响因子:
    29.4
  • 作者:
    Giolando,Patrick A.;Hopkins,Kelsey;Kinzer-Ursem,Tamara L.
  • 通讯作者:
    Kinzer-Ursem,Tamara L.
An Integrative Biology Approach to Quantify the Biodistribution of Azidohomoalanine In Vivo
  • DOI:
    10.1007/s12195-023-00760-4
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Saleh,Aya M.;VanDyk,Tyler G.;Kinzer-Ursem,Tamara L.
  • 通讯作者:
    Kinzer-Ursem,Tamara L.
A multi-state model of the CaMKII dodecamer suggests a role for calmodulin in maintenance of autophosphorylation
  • DOI:
    10.1371/journal.pcbi.1006941
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Matthew C. Pharris;T. Bartol;T. Sejnowski;M. Kennedy;Melanie I. Stefan;Tamara L. Kinzer-Ursem
  • 通讯作者:
    Matthew C. Pharris;T. Bartol;T. Sejnowski;M. Kennedy;Melanie I. Stefan;Tamara L. Kinzer-Ursem
Measurement of Protein-Protein Interaction Dynamics Using Microfluidics and Particle Diffusometry.
  • DOI:
    10.1021/acs.analchem.2c02570
  • 发表时间:
    2022-11-15
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Ma, Hui;Wereley, Steven T.;Linnes, Jacqueline C.;Kinzer-Ursem, Tamara L.
  • 通讯作者:
    Kinzer-Ursem, Tamara L.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tamara Kinzer-Ursem其他文献

Tamara Kinzer-Ursem的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tamara Kinzer-Ursem', 18)}}的其他基金

I-Corps: A Smartphone-Based Pathogen Detection Device for Remote and Low-Resource Settings
I-Corps:一种基于智能手机的病原体检测设备,适用于远程和资源匮乏的环境
  • 批准号:
    1824818
  • 财政年份:
    2018
  • 资助金额:
    $ 54.92万
  • 项目类别:
    Standard Grant

相似海外基金

Tools to Control and Monitor Van der Waals Forces between Nanoparticles: Quantitative Insights on Biological, Environmental, and Fungal Cell Interactions.
控制和监测纳米颗粒之间范德华力的工具:对生物、环境和真菌细胞相互作用的定量见解。
  • 批准号:
    2335597
  • 财政年份:
    2024
  • 资助金额:
    $ 54.92万
  • 项目类别:
    Continuing Grant
Quantitative assessment of plastic deformation in cutting tools materials
切削刀具材料塑性变形的定量评估
  • 批准号:
    10060628
  • 财政年份:
    2023
  • 资助金额:
    $ 54.92万
  • 项目类别:
    Collaborative R&D
SBIR TOPIC 417: QUANTITATIVE IMAGING SOFTWARE TOOLS FOR CANCER DIAGNOSIS AND TREATMENT PLANNING
SBIR 主题 417:用于癌症诊断和治疗计划的定量成像软件工具
  • 批准号:
    10924835
  • 财政年份:
    2023
  • 资助金额:
    $ 54.92万
  • 项目类别:
Development of advanced quantitative tools for laser radiation safety evaluation in laser urology
激光泌尿外科激光辐射安全性评估先进定量工具的开发
  • 批准号:
    2325739
  • 财政年份:
    2023
  • 资助金额:
    $ 54.92万
  • 项目类别:
    Standard Grant
Establishing translational neuroimaging tools for quantitative assessment of energy metabolism and metabolic reprogramming in healthy and diseased human brain at 7T
建立转化神经影像工具,用于定量评估 7T 健康和患病人脑的能量代谢和代谢重编程
  • 批准号:
    10714863
  • 财政年份:
    2023
  • 资助金额:
    $ 54.92万
  • 项目类别:
Development of quantitative optical tools to continuously monitor cerebral autoregulation, blood flow, oxygenation and inflammation during pediatric extracorporeal life support
开发定量光学工具,在儿科体外生命支持过程中持续监测脑自动调节、血流、氧合和炎症
  • 批准号:
    10365859
  • 财政年份:
    2022
  • 资助金额:
    $ 54.92万
  • 项目类别:
Structural steel project development integrating structural design and construction engineering: quantitative methods and AI-based tools
结构设计与施工工程相结合的钢结构项目开发:定量方法和基于人工智能的工具
  • 批准号:
    579062-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 54.92万
  • 项目类别:
    Alliance Grants
Quantitative and Qualitative Tools for Predicting the Products and Mechanisms of Chemical Reactions
预测化学反应产物和机理的定量和定性工具
  • 批准号:
    RGPIN-2018-06652
  • 财政年份:
    2022
  • 资助金额:
    $ 54.92万
  • 项目类别:
    Discovery Grants Program - Individual
Advancing knowledge and developping mechanistic quantitative tools for in vitro-in vivo extrapolations in pharmacokinetics and toxicokinetics
增进知识并开发药代动力学和毒代动力学体外体内外推的机械定量工具
  • 批准号:
    RGPIN-2020-05251
  • 财政年份:
    2022
  • 资助金额:
    $ 54.92万
  • 项目类别:
    Discovery Grants Program - Individual
Computational tools and quantitative analyses of genome structure evolution
基因组结构进化的计算工具和定量分析
  • 批准号:
    10686401
  • 财政年份:
    2022
  • 资助金额:
    $ 54.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了