CAREER: Topology and symmetry in non-equilibrium quantum systems

职业:非平衡量子系统的拓扑和对称性

基本信息

  • 批准号:
    1752759
  • 负责人:
  • 金额:
    $ 57.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis CAREER award supports theoretical research and education in the dynamics of complex quantum systems away from equilibrium. Recent experimental advances in laser physics have enabled the control of electrons in materials at ultrafast time scales, before they can equilibrate. Likewise, the production of ultracold gases of atoms that are well isolated from their surroundings has enabled the real-time observation of their quantum dynamics. These developments have opened up a new regime of inquiry within quantum mechanics. This research seeks to elucidate complex quantum dynamics in specific settings.The most unexpected discovery in this context is that even extremely energetic quantum particles can remain spatially localized under a broad range of experimental conditions. This is in striking contrast with usual intuition from classical mechanics: if one rapidly shakes a box full of marbles, they do not stay still. When quantum particles localize, not only do they stay still, but they also become potentially usable for controlled quantum computation. The project aims to clarify the precise conditions under which this localization arises, determine near-term experimental observables, and build towards a complete theory of this poorly understood phenomenon. On driving the support of a simple pendulum quickly, the effects of gravity can be undone: the pendulum bob can settle in the inverted position above the point of support. Recent experiments in electronic systems suggest that strong laser radiation can similarly stabilize exotic quantum effects, such as superconductivity at short times, in materials which do not normally superconduct. Another aim of the project is to develop a theory of such dynamically stabilized states so as to control and engineer them for computation and other applications.In addition to mentoring and training graduate and undergraduate students participating in the research program, the PI aims to inspire local middle- and high-school students to explore careers in STEM through "Physics days" involving lab tours, demonstrations, and faculty interactions. Furthermore, this award will support the PI's role in a new public lecture series, which aims to engage the broader Boston community on everyday physics and the frontiers of research. As the future of nonequilibrium physics increasingly relies on physicists with interdisciplinary skills, the PI proposes to develop a new course unifying the approaches to out-of-equilibrium physics in quantum, optical, and biological settings. TECHNICAL SUMMARYThis CAREER award supports theoretical research and education in discovering, characterizing, and controlling quantum orders in many-body systems far from equilibrium. Through a multipronged approach that includes studies in model systems, developing general theorems about quantum steady states, perturbation theory and numerical computation, this project proposes to address the following fundamental issues:1) Strong quenched disorder can indefinitely prevent local equilibration in a well-isolated system, a remarkable phenomenon known as many-body localization. The PI will investigate foundational aspects of many-body localization in higher dimensions, in quasiperiodic settings, and the interplay of localization and topology.2) Exotic nonequilibrium orders with no equilibrium counterpart can arise in driven quantum systems, offering a unique window into robust quantum coherent many-body phenomena. The PI will discover and classify the complex orders accessible with multitone driving and investigate their stability.3) Environmental properties are crucial in state preparation and stabilizing fragile topological states. The PI will investigate the properties of unconventional environments, including anyon baths and baths with memory in experimentally relevant systems and extract their universal features.Remarkable experimental advances in the past decade in the ultrafast spectroscopy of correlated materials and in the construction of well-isolated ultracold atomic and molecular gases have brought real-time dynamics of many-body quantum systems into sharp focus. Concurrently, the quest to build a quantum computer in experimental platforms like superconducting qubits and trapped ions has raised many interesting questions about coherence in driven dissipative systems and has led to a rich exchange of ideas between quantum information theory and condensed matter. Theoretically, the understanding of far-from-equilibrium systems remains challenging because the assumptions underlying statistical mechanics typically fail to apply. The proposed research seeks to broadly advance our understanding of quantum many-body dynamics in closed, driven, and open settings, and to specifically apply it to the observation of novel quantum orders in dynamical settings. The development of new computational methods and the understanding of microscopic time scales in realistic experimental systems will also be a priority.In addition to mentoring and training graduate and undergraduate students participating in the research program, the PI aims to inspire local middle- and high-school students to explore careers in STEM through "Physics days" involving lab tours, demonstrations, and faculty interactions. Furthermore, this award will support the PI's role in a new public lecture series, which aims to engage the broader Boston community on everyday physics and the frontiers of research. As the future of nonequilibrium physics increasingly relies on physicists with interdisciplinary skills, the PI proposes to develop a new course unifying the approaches to out-of-equilibrium physics in quantum, optical, and biological settings.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术总结这个职业奖支持理论研究和教育的复杂量子系统的动力学远离平衡。激光物理学的最新实验进展已经能够在超快时间尺度上控制材料中的电子,然后才能平衡。同样,与周围环境隔离良好的超冷原子气体的产生使得能够实时观察它们的量子动力学。这些发展在量子力学中开辟了一个新的研究领域。这项研究旨在阐明特定环境下的复杂量子动力学。在这种背景下,最意想不到的发现是,即使是极高能量的量子粒子也可以在广泛的实验条件下保持空间局域化。这与经典力学的通常直觉形成了鲜明的对比:如果一个人快速摇动一个装满弹珠的盒子,它们不会保持静止。当量子粒子局域化时,它们不仅保持静止,而且还可能用于受控量子计算。该项目旨在澄清这种局部化产生的确切条件,确定近期的实验观测值,并建立一个完整的理论,这个鲜为人知的现象。在快速驱动单摆的支架时,重力的影响可以被消除:摆锤可以在支撑点上方的倒立位置。最近的电子系统实验表明,强激光辐射可以类似地稳定奇异的量子效应,例如在短时间内,在通常不超导的材料中的超导性。该项目的另一个目的是开发这种动态稳定状态的理论,以便控制和设计它们用于计算和其他应用。除了指导和培训参与研究计划的研究生和本科生,PI还旨在通过包括实验室图尔斯,演示和教师互动在内的“物理日”来激励当地的初中和高中学生探索STEM职业。此外,该奖项将支持PI在新的公共讲座系列中的作用,该系列旨在让更广泛的波士顿社区参与日常物理学和研究前沿。由于非平衡物理学的未来越来越依赖于具有跨学科技能的物理学家,PI建议开发一门新课程,统一量子,光学和生物环境中的平衡物理学方法。该职业奖支持理论研究和教育,以发现,表征和控制远离平衡的多体系统中的量子秩序。本项目通过模型系统的研究、量子定态的一般理论、微扰理论和数值计算等多管齐下的方法,提出解决以下基本问题:1)强猝灭无序可以无限期地阻止孤立系统中的局部平衡,这是一种被称为多体局域化的显著现象。PI将调查在更高的维度,在准周期设置,以及本地化和拓扑的相互作用的多体本地化的基础方面。2)没有平衡对应的异国情调的非平衡订单可以出现在驱动量子系统,提供了一个独特的窗口到强大的量子相干多体现象。PI将发现和分类的复杂订单可与多音驱动,并研究其稳定性。3)环境属性是至关重要的状态准备和稳定脆弱的拓扑状态。PI将研究非常规环境的性质,包括实验相关系统中的任意子浴和记忆浴,并提取其普适特征。过去十年来,在相关材料的超快光谱学和良好隔离的超冷原子和分子气体的构建方面取得了显着的实验进展,使多体量子系统的实时动力学成为焦点。与此同时,在超导量子比特和捕获离子等实验平台上构建量子计算机的探索提出了许多关于驱动耗散系统相干性的有趣问题,并导致量子信息理论和凝聚态之间的思想交流。从理论上讲,对远离平衡系统的理解仍然具有挑战性,因为统计力学的假设通常不适用。拟议的研究旨在广泛推进我们对封闭,驱动和开放环境中量子多体动力学的理解,并将其具体应用于观察动态环境中的新量子秩序。此外,新的计算方法的开发和对现实实验系统中微观时间尺度的理解也将是优先事项。除了指导和培训参与研究计划的研究生和本科生外,PI还旨在通过包括实验室图尔斯、演示和教师互动在内的“物理日”,激励当地初中和高中学生探索STEM职业。此外,该奖项将支持PI在新的公共讲座系列中的作用,该系列旨在让更广泛的波士顿社区参与日常物理学和研究前沿。由于非平衡物理学的未来越来越依赖于具有跨学科技能的物理学家,PI提议开发一门新课程,统一量子、光学和生物环境中的非平衡物理学方法。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shortcuts to dynamic polarization
  • DOI:
    10.1103/physrevb.103.075118
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Tamiro Villazon;P. W. Claeys;A. Polkovnikov;A. Chandran
  • 通讯作者:
    Tamiro Villazon;P. W. Claeys;A. Polkovnikov;A. Chandran
Boosting the Quantum State of a Cavity with Floquet Driving
  • DOI:
    10.1103/physrevlett.128.183602
  • 发表时间:
    2022-05-04
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Long, David M.;Crowley, Philip J. D.;Chandran, Anushya
  • 通讯作者:
    Chandran, Anushya
Partial thermalisation of a two-state system coupled to a finite quantum bath
与有限量子浴耦合的二态系统的部分热化
  • DOI:
    10.21468/scipostphys.12.3.103
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Crowley, Philip;Chandran, Anushya
  • 通讯作者:
    Chandran, Anushya
Slow thermalization of exact quantum many-body scar states under perturbations
  • DOI:
    10.1103/physrevresearch.2.033044
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Cheng-Ju Lin;A. Chandran;O. Motrunich
  • 通讯作者:
    Cheng-Ju Lin;A. Chandran;O. Motrunich
Topological classification of quasiperiodically driven quantum systems
  • DOI:
    10.1103/physrevb.99.064306
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    P. Crowley;I. Martin;A. Chandran
  • 通讯作者:
    P. Crowley;I. Martin;A. Chandran
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anushya Chandran其他文献

Efficient Local Classical Shadow Tomography with Number Conservation
具有数字守恒的高效局部经典阴影断层扫描
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sumner N. Hearth;Michael O. Flynn;Anushya Chandran;C. Laumann
  • 通讯作者:
    C. Laumann
Constraining Many-Body Localization
约束多体定位
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Anushya Chandran;P. Crowley
  • 通讯作者:
    P. Crowley

Anushya Chandran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Topics in mirror symmetry and symplectic topology
镜像对称和辛拓扑主题
  • 批准号:
    2746276
  • 财政年份:
    2022
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Studentship
Singularities, symplectic topology and mirror symmetry
奇点、辛拓扑和镜像对称
  • 批准号:
    EP/W001780/1
  • 财政年份:
    2022
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Fellowship
Alexandrov Geometry in the light of symmetry and topology
对称性和拓扑学中的亚历山德罗夫几何
  • 批准号:
    441899338
  • 财政年份:
    2020
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Priority Programmes
Symmetry, Geometry, and Topology of Quantum Many-Body States for Quantum Computation
用于量子计算的量子多体态的对称性、几何和拓扑
  • 批准号:
    1915011
  • 财政年份:
    2019
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Standard Grant
CAREER: Interplay of Symmetry and Topology in Condensed Matter Systems
职业:凝聚态系统中对称性和拓扑的相互作用
  • 批准号:
    1846109
  • 财政年份:
    2019
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Continuing Grant
Hydrodynamic topology transitions: dimensionality and symmetry
流体动力学拓扑转变:维数和对称性
  • 批准号:
    19H01859
  • 财政年份:
    2019
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: Topology and Symmetry Enabled Phenomena in Lasers and Other Non-Hermitian Photonic Media
职业:激光器和其他非厄米光子介质中的拓扑和对称现象
  • 批准号:
    1847240
  • 财政年份:
    2019
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Continuing Grant
Symmetry and Self-Similar Structures in Geometry and Topology
几何和拓扑中的对称和自相似结构
  • 批准号:
    1855371
  • 财政年份:
    2018
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Standard Grant
Symmetry and Self-Similar Structures in Geometry and Topology
几何和拓扑中的对称和自相似结构
  • 批准号:
    1811824
  • 财政年份:
    2018
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Standard Grant
Novel magnon transport phenomena under spin textures with nontrivial topology and symmetry
具有非平凡拓扑和对称性的自旋纹理下的新型磁振子输运现象
  • 批准号:
    18H03685
  • 财政年份:
    2018
  • 资助金额:
    $ 57.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了