CAREER: Volatiles in the Deep Earth: Insights From Theory and Experiments
职业:地球深处的挥发物:理论和实验的见解
基本信息
- 批准号:1753125
- 负责人:
- 金额:$ 55.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-15 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Earth is the only planet in the solar system that has the right conditions for habitability. A key ingredient that makes life possible is a vast reservoir of water on the Earth's surface. However, the rocky interior of the Earth plays an important role in sustaining this surface liquid water over geological time scales. Liquid water facilitates weathering of surface rocks and minerals, and in the process, produces minerals such as clays and other hydrous mineral phases that can lock up the liquid water in their crystal structure. These hydrous minerals are the ultimate sinks for storing water at surficial conditions. If the weathering processes were to continue unhindered, all the liquid water on the Earth's surface could be potentially stored in the crystalline hydrous minerals in a time scale of a few billion years. The process of mantle convection in the rocky interior of the Earth helps in circulating this water stored in minerals back to the surface through dehydration and subsequent volcanism. Water at depth plays an important role in reducing the melting temperature of the rocks constituting the mantle. Water also gets incorporated as hydrogen defects in mantle minerals and affects their elastic and transport properties, including rheology and viscosity. This in turn facilitates mantle convection process in the Earth. Owing to the importance of water in the deep Earth processes, it is important to constrain how water is transported in to the Earth's interior and to determine how much water is stored in the rocky interior of the Earth. This Faculty Early Career Development (CAREER) award aims to address these fundamental questions by integrating research, training, and mentoring of the next generation of scientists and educators in the STEM fields and by making them aware of the importance of Solid Earth research for society. Undergraduate students through the Florida State University's Undergraduate Research Opportunity Program (UROP) and high school students through the Young Scholar Program (YSP) will be involved in this research. The PI will also reach out to school students from underrepresented school districts, including Leon, Gadsden, Jefferson, and Hamilton counties in Florida and Thomas County in Georgia. The principal investigator (PI) will participate in educational and outreach activities hosted by the Challenger Learning Center. The PI and his team will present the outcomes from this project at international conferences, including the Fall American Geophysical Union (AGU) meeting. They will also participate in NSF-sponsored and community-driven workshops and conferences funded by NSF.The overarching theme of this study will be to explore the high-pressure and temperature physical properties of hydrogen bearing mineral phases. In particular, the PI will use a combination of experiments and theoretical methods to examine the behavior of hydrogen and how it influences- elastic and transport properties such as diffusion and electrical conductivity of minerals at conditions relevant to the Earth's interior. The properties of hydrous minerals will be explored using vibrational spectroscopy, scattering and diffraction methods at both in house and international facilities. High-temperature elasticity of hydrogen bearing minerals will be examined using Resonant Ultrasound Spectroscopy. The experimental findings will be supplemented with first principles simulations. The constraints on elasticity and transport properties will be correlated with geophysical observations to put better constraints on the transport of water into the Earth?s interior and also the size of the water reservoir in the deep Earth.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
地球是太阳系中唯一具备适宜居住条件的行星。使生命成为可能的一个关键因素是地球表面的巨大水库。然而,地球内部的岩石在地质时间尺度上维持这种表面液态水方面起着重要作用。液态水促进表面岩石和矿物的风化,并在此过程中产生矿物,如粘土和其他含水矿物相,可以将液态水锁定在其晶体结构中。这些含水矿物是在表层条件下储存水的最终汇。如果风化过程不受阻碍地继续下去,地球表面所有的液态水都可能在几十亿年的时间内储存在结晶含水矿物中。地球岩石内部的地幔对流过程有助于通过脱水和随后的火山作用将储存在矿物中的水循环回地表。深部水在降低地幔岩石的熔融温度方面起着重要作用。水也会以氢缺陷的形式进入地幔矿物中,并影响它们的弹性和运输性质,包括流变学和粘度。这反过来又促进了地球的地幔对流过程。由于水在地球深部过程中的重要性,重要的是要限制水如何被输送到地球内部,并确定有多少水储存在地球的岩石内部。该学院早期职业发展(CAREER)奖旨在通过整合STEM领域下一代科学家和教育工作者的研究,培训和指导,并使他们意识到固体地球研究对社会的重要性,来解决这些基本问题。通过佛罗里达州立大学的本科生研究机会计划(UROP)和高中生通过青年学者计划(YSP)将参与这项研究。PI还将接触来自代表性不足的学区的学生,包括佛罗里达的莱昂、加兹登、杰斐逊和汉密尔顿县以及格鲁吉亚的托马斯县。主要研究者(PI)将参加由挑战者学习中心主办的教育和推广活动。PI和他的团队将在国际会议上介绍该项目的成果,包括秋季美国地球物理联盟(AGU)会议。他们还将参加由NSF赞助和社区驱动的研讨会和会议。这项研究的首要主题是探索含氢矿物相的高压和高温物理性质。特别是,PI将使用实验和理论方法相结合的方法来研究氢的行为以及它如何影响弹性和传输特性,例如在与地球内部相关的条件下矿物的扩散和电导率。含水矿物的性质将在内部和国际设施中使用振动光谱、散射和衍射方法进行探索。含氢矿物的高温弹性将使用共振超声光谱学进行检查。实验结果将补充第一原理模拟。弹性和运输性能的限制将与地球物理观测,把更好的限制运输到地球的水?该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Halogen Bearing Amphiboles, Aqueous Fluids, and Melts in Subduction Zones: Insights on Halogen Cycle From Electrical Conductivity
- DOI:10.1029/2020jb021339
- 发表时间:2021-03-01
- 期刊:
- 影响因子:3.9
- 作者:Manthilake, G.;Koga, K. T.;Mookherjee, M.
- 通讯作者:Mookherjee, M.
High-pressure behavior of a linear chain alkane, tricosane
- DOI:10.1063/1.5143450
- 发表时间:2020-03
- 期刊:
- 影响因子:3.2
- 作者:Abhisek Basu;Patrick P Murphy;M. Mookherjee;B. Haberl;R. Boehler
- 通讯作者:Abhisek Basu;Patrick P Murphy;M. Mookherjee;B. Haberl;R. Boehler
The Electrical Conductivity of Liebermannite: Implications for Water Transport Into the Earth's Lower Mantle
- DOI:10.1029/2020jb020094
- 发表时间:2020-08-01
- 期刊:
- 影响因子:3.9
- 作者:Manthilake, Geeth;Schiavi, Federica;Jouffret, Laurent
- 通讯作者:Jouffret, Laurent
High-pressure elastic properties of dolomite melt supporting carbonate-induced melting in deep upper mantle
- DOI:10.1073/pnas.2004347117
- 发表时间:2020-07
- 期刊:
- 影响因子:11.1
- 作者:Man Xu;Z. Jing;S. Bajgain;M. Mookherjee;James A. Van Orman;Tony Yu;Yanbin Wang
- 通讯作者:Man Xu;Z. Jing;S. Bajgain;M. Mookherjee;James A. Van Orman;Tony Yu;Yanbin Wang
Seismic Anisotropy in Subduction Zones: Evaluating the Role of Chloritoid
- DOI:10.3389/feart.2021.644958
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Jungjin Lee;M. Mookherjee;Taehwan Kim;H. Jung;R. Klemd
- 通讯作者:Jungjin Lee;M. Mookherjee;Taehwan Kim;H. Jung;R. Klemd
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mainak Mookherjee其他文献
Elasticity of Hydrous Aluminosilicate Mineral, Topaz-OH (Al2SiO4(OH)2) at High Pressures
水合铝硅酸盐矿物 Topaz-OH (Al2SiO4(OH)2) 在高压下的弹性
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Anant Hariharan;Mainak Mookherjee;Jun Tsuchiya - 通讯作者:
Jun Tsuchiya
High pressure transition of FeOOH in the lower mantle
下地幔中 FeOOH 的高压转变
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Mainak Mookherjee;Jun Tsuchiya;Anant Hariharan;Jun Tsuchiya - 通讯作者:
Jun Tsuchiya
High-pressure Raman scattering and X-ray diffraction study of kaolinite, Alsub2/subSisub2/subOsub5/sub(OH)sub4/sub
高岭石 Al₂Si₂O₅(OH)₄ 的高压拉曼散射和 X 射线衍射研究
- DOI:
10.1016/j.clay.2023.107144 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:5.800
- 作者:
Abhisek Basu;Mainak Mookherjee;Stephen Clapp;Stella Chariton;Vitali B. Prakapenka - 通讯作者:
Vitali B. Prakapenka
地球深部における揮発性元素循環モデルの構築
地球深处挥发性元素循环模型的构建
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Mainak Mookherjee;Jun Tsuchiya;Anant Hariharan;Jun Tsuchiya;土屋 旬 - 通讯作者:
土屋 旬
High-pressure Raman scattering and X-ray diffraction study of kaolinite, Al<sub>2</sub>Si<sub>2</sub>O<sub>5</sub>(OH)<sub>4</sub>
- DOI:
10.1016/j.clay.2023.107144 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:
- 作者:
Abhisek Basu;Mainak Mookherjee;Stephen Clapp;Stella Chariton;Vitali B. Prakapenka - 通讯作者:
Vitali B. Prakapenka
Mainak Mookherjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mainak Mookherjee', 18)}}的其他基金
Collaborative Research: Structure and properties of geofluids and their impact on fluid migration in subduction zones
合作研究:俯冲带地流体的结构和性质及其对流体运移的影响
- 批准号:
2246802 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别:
Continuing Grant
CSEDI Collaborative Research: C-O-H Volatile Metasomatism in the Cratonic Mantle - Implications for Mid-Lithospheric Discontinuities
CSEDI 合作研究:克拉通地幔中的 C-O-H 挥发性交代作用 - 对中岩石圈间断面的影响
- 批准号:
1763215 - 财政年份:2018
- 资助金额:
$ 55.06万 - 项目类别:
Standard Grant
Early Career: Acquisition of a Raman Spectrometer for a Mineral Physics research laboratory
早期职业生涯:为矿物物理研究实验室购买拉曼光谱仪
- 批准号:
1638752 - 财政年份:2017
- 资助金额:
$ 55.06万 - 项目类别:
Standard Grant
High-pressure and Temperature Elasticity and Equation of State of Hydrous Phase
高压高温弹性及水相状态方程
- 批准号:
1639552 - 财政年份:2016
- 资助金额:
$ 55.06万 - 项目类别:
Continuing Grant
Aluminous phase at high-pressures & temperatures: Elasticity and Energetics of hydrogen incorporation
高压下的铝相
- 批准号:
1520726 - 财政年份:2015
- 资助金额:
$ 55.06万 - 项目类别:
Continuing Grant
Aluminous phase at high-pressures & temperatures: Elasticity and Energetics of hydrogen incorporation
高压下的铝相
- 批准号:
1634422 - 财政年份:2015
- 资助金额:
$ 55.06万 - 项目类别:
Continuing Grant
High-pressure and Temperature Elasticity and Equation of State of Hydrous Phase
高压高温弹性及水相状态方程
- 批准号:
1250477 - 财政年份:2013
- 资助金额:
$ 55.06万 - 项目类别:
Continuing Grant
相似海外基金
Determining the origin and evolutionary history of volatiles on Earth
确定地球上挥发物的起源和进化历史
- 批准号:
NE/X01732X/1 - 财政年份:2024
- 资助金额:
$ 55.06万 - 项目类别:
Fellowship
Magmatic volatiles in the fourth dimension
第四维度的岩浆挥发物
- 批准号:
NE/X013642/1 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别:
Research Grant
The origin of Earth's volatiles - new constraints from isotopic analyses of meteorites
地球挥发物的起源——陨石同位素分析的新限制
- 批准号:
2887388 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别:
Studentship
Probing the Origin(s) of Volatiles in the Moon and their Resource Potential
探索月球挥发物的来源及其资源潜力
- 批准号:
2882739 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别:
Studentship
GLOW: Loss of volatiles from the Hadean Earth and the redox evolution of the early atmosphere
辉光:冥古宙地球挥发物的损失和早期大气的氧化还原演化
- 批准号:
2224727 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别:
Standard Grant
Nitrogen Acquisition in Plant via Bacterial Volatiles
植物通过细菌挥发物获取氮
- 批准号:
23K18000 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Constraining the behaviour of volatiles in evolving rocky planets
限制演化中的岩石行星中挥发物的行为
- 批准号:
2902818 - 财政年份:2023
- 资助金额:
$ 55.06万 - 项目类别:
Studentship
Magmatic volatiles and degassing from the Earth
岩浆挥发物和地球脱气
- 批准号:
RGPIN-2020-04197 - 财政年份:2022
- 资助金额:
$ 55.06万 - 项目类别:
Discovery Grants Program - Individual
U.S.-Ireland R&D Partnership: Wearable Dynamic Microsystem Sampler for Collecting Microbial Volatiles (SenSorp)
美国-爱尔兰 R
- 批准号:
2139716 - 财政年份:2022
- 资助金额:
$ 55.06万 - 项目类别:
Standard Grant
Investigating Atmospheric Volatiles on Planets in our Solar System and Beyond
研究太阳系及其他行星上的大气挥发物
- 批准号:
RGPIN-2019-06334 - 财政年份:2022
- 资助金额:
$ 55.06万 - 项目类别:
Discovery Grants Program - Individual