Adaptive Rewiring of a Sensory Network through Spike-Timing-Dependent Plasticity

通过尖峰时间依赖性可塑性自适应重新连接感觉网络

基本信息

  • 批准号:
    1755071
  • 负责人:
  • 金额:
    $ 70万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-15 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

Behavior in all animals, including humans, depends on detecting external sensory stimuli and responding appropriately. There are a variety of mechanisms by which sensory systems maximize the detection of stimuli that are important to the animal. However, the sensory environment is constantly changing. How can animals reliably detect behaviorally relevant sensory stimuli while also retaining the flexibility to adapt to changes in the sensory environment? One possible mechanism is synaptic plasticity in which the strengths of the synaptic connections between neurons are adjusted based on past experience. The central hypothesis of this project is that the intrinsic dynamics of neural networks induce synaptic plasticity that results in increased sensitivity to frequently encountered stimuli. Synaptic plasticity is found throughout the brain, but it is generally challenging to study directly in a living animal. The researchers capitalize on the unique experimental advantages of electric fish, in which it is possible to manipulate precisely and monitor the electrical activity of sensory neurons in an awake, behaving animal. In the context of social communication behavior, the researchers study how plasticity alters responses to sensory input, whether natural patterns of sensory input can induce this plasticity, and how this plasticity impacts the behavioral detection of stimuli. This research has broad implications by elucidating how sensory systems adjust to changing external conditions. In addition, electric fish are excellent tools for public outreach in neuroscience and behavior. As exotic animals, they attract a wide audience. The project includes ongoing outreach and education activities to teach K-12 students in the St. Louis region about hypothesis-driven science and the importance of brain plasticity in sensory perception and behavior.Temporal codes have been implicated in sensory processing, cognition, and motor control. Recent studies reveal several mechanisms by which central sensory pathways decode temporal patterns. However, the sensory environment can change. A fundamental problem in sensory neuroscience is understanding how central circuits can robustly detect behaviorally relevant stimuli while retaining the flexibility to adapt to changes in the sensory environment. Spike-timing-dependent plasticity (STDP), in which synaptic strength is adjusted as a function of the relative timing of pre- and postsynaptic spiking, is found in several brain regions across a wide diversity of species. However, its role in the processing of behaviorally relevant stimuli remains controversial, largely because it is inherently difficult to link changes in synaptic strength at the cellular level to effects on behavior. The central hypothesis of this project is that STDP provides a mechanism for modifying network connectivity to adapt information processing to a changing sensory environment. The researchers address this hypothesis by using an integrative approach that capitalizes on the unique experimental advantages of electric fish, in which temporal patterns of spiking are themselves the behaviorally relevant stimulus. Using a combination of neurophysiology, imaging, and behavior, the researchers are determining how STDP alters responses to sensory input in awake and behaving animals, how natural patterns of sensory input can elicit STDP, and how these changes impact behavioral stimulus detection. The project includes outreach and education efforts that target K-12 students in the St. Louis region to teach them about brain plasticity and how the scientific method can be used to address questions about how brains control behavior. As part of the outreach, researchers lead hands-on activities that include experiments with freely behaving fish, psychophysical experiments on participants, and multimedia demonstrations to illustrate brain plasticity and its role in modifying behavior.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
所有动物的行为,包括人类,都依赖于对外部感官刺激的检测和适当的反应。感官系统最大限度地检测到对动物重要的刺激的机制有多种。然而,感觉环境是不断变化的。动物如何在保持适应感觉环境变化的灵活性的同时,可靠地检测到与行为相关的感觉刺激?一种可能的机制是突触可塑性,即神经元之间突触连接的强度根据过去的经验进行调整。该项目的中心假设是,神经网络的内在动力学诱导突触可塑性,导致对常见刺激的敏感性增加。突触的可塑性在大脑中随处可见,但直接在活体动物身上进行研究通常是具有挑战性的。研究人员利用电鱼独特的实验优势,可以精确地操纵和监测清醒的、行为正常的动物的感觉神经元的电活动。在社会交流行为的背景下,研究人员研究了可塑性如何改变对感觉输入的反应,感觉输入的自然模式是否可以诱导这种可塑性,以及这种可塑性如何影响对刺激的行为检测。这项研究通过阐明感官系统如何适应不断变化的外部条件,具有广泛的意义。此外,电鱼是神经科学和行为学公共宣传的极好工具。作为外来动物,它们吸引了广泛的观众。该项目包括正在进行的推广和教育活动,向圣路易斯地区的K-12学生传授假说驱动的科学以及大脑可塑性在感觉知觉和行为中的重要性。最近的研究揭示了中枢感觉通路解码时间模式的几种机制。然而,感觉环境可能会发生变化。感觉神经科学中的一个基本问题是了解中央回路如何在保持适应感觉环境变化的灵活性的同时,有力地检测与行为相关的刺激。突触时序依赖的可塑性(STDP)是指突触强度随突触前和突触后的相对时序而调节,它存在于不同物种的几个大脑区域。然而,它在处理与行为相关的刺激中的作用仍然存在争议,主要是因为在细胞水平上很难将突触强度的变化与对行为的影响联系起来。该项目的中心假设是,STDP提供了一种修改网络连接的机制,以使信息处理适应不断变化的感觉环境。研究人员通过使用一种综合的方法来解决这一假设,该方法利用了电鱼独特的实验优势,其中尖峰的时间模式本身就是行为相关的刺激。利用神经生理学、成像和行为的组合,研究人员正在确定STDP如何改变清醒和行为动物对感觉输入的反应,感觉输入的自然模式如何引发STDP,以及这些变化如何影响行为刺激检测。该项目包括以圣路易斯地区的K-12学生为目标的外展和教育活动,向他们传授大脑可塑性,以及如何使用科学方法来解决大脑如何控制行为的问题。作为推广活动的一部分,研究人员领导实践活动,包括与自由行为的鱼的实验,参与者的心理物理实验,以及多媒体演示,以说明大脑可塑性及其在改变行为中的作用。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish
信号多样化与弱电鱼的必然放电演化有关
  • DOI:
    10.1523/jneurosci.0875-20.2020
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fukutomi, Matasaburo;Carlson, Bruce A.
  • 通讯作者:
    Carlson, Bruce A.
Pauses during communication release behavioral habituation through recovery from synaptic depression
  • DOI:
    10.1016/j.cub.2021.04.056
  • 发表时间:
    2021-07-26
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    Kohashi, Tsunehiko;Lube, Adalee J.;Carlson, Bruce A.
  • 通讯作者:
    Carlson, Bruce A.
Integrating neuroplasticity and evolution
  • DOI:
    10.1016/j.cub.2023.03.002
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    C. Axelrod;S. Gordon;B. Carlson
  • 通讯作者:
    C. Axelrod;S. Gordon;B. Carlson
Spike timing-dependent plasticity alters electrosensory neuron synaptic strength in vitro but does not consistently predict changes in sensory tuning in vivo
  • DOI:
    10.1152/jn.00498.2022
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Lube,Adalee J.;Ma,Xiaofeng;Carlson,Bruce A.
  • 通讯作者:
    Carlson,Bruce A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruce Carlson其他文献

Measurement and modelling of mass and dimensional variations of historic violins subjected to thermo-hygrometric variations: The case study of the <em>Guarneri “del Gesù”</em> violin (1743) known as the “<em>Cannone</em>”
  • DOI:
    10.1016/j.culher.2012.04.007
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Giacomo Goli;Marco Fioravanti;Simone Busoni;Bruce Carlson;Paola Mazzanti
  • 通讯作者:
    Paola Mazzanti
The feeding ecology of three species of Caribbean angelfishes (family Pomacanthidae)
  • DOI:
    10.1007/bf00001281
  • 发表时间:
    1989-02-01
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Thomas F. Hourigan;Frank G. Stanton;Philip J. Motta;Christopher D. Kelley;Bruce Carlson
  • 通讯作者:
    Bruce Carlson
Removal of benign intraoral masses using the CO<sub>2</sub> laser
  • DOI:
    10.14219/jada.archive.1987.0297
  • 发表时间:
    1987-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Elliott Abt;Harvey Wigdor;Rocco Lobraico;Bruce Carlson;David Harris;Robert Pyrcz
  • 通讯作者:
    Robert Pyrcz
Gender Differences in Attitudes Toward Gay Men and Lesbians: The Role of Motivation to Respond Without Prejudice
对男同性恋和女同性恋态度的性别差异:不带偏见回应的动机的作用
  • DOI:
    10.1177/0146167206290213
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    4
  • 作者:
    J. Ratcliff;G. Lassiter;K. Markman;Celeste J. Snyder;Frank Bellezza;Bruce Carlson;Ron Hunt;Jeff Sherman;Steven Stroessner;Erin Busse;Stacey Dauster;Michelle DuPrey
  • 通讯作者:
    Michelle DuPrey
Structural assessment and measurement of the elastic deformation of historical violins: The case study of the Guarneri ‘del Gesù’ violin (1743) known as the ‘Cannone’
  • DOI:
    10.1016/j.culher.2011.07.005
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Marco Fioravanti;Giacomo Goli;Bruce Carlson
  • 通讯作者:
    Bruce Carlson

Bruce Carlson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruce Carlson', 18)}}的其他基金

Neuronal plasticity and the evolvability of behavior
神经元可塑性和行为的进化性
  • 批准号:
    2203122
  • 财政年份:
    2022
  • 资助金额:
    $ 70万
  • 项目类别:
    Standard Grant
Brain Evolution, Communication, and the Diversification of Behavior
大脑进化、沟通和行为多样化
  • 批准号:
    1255396
  • 财政年份:
    2013
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
Synaptic Mechanisms for the Processing of Temporal Codes
处理时间编码的突触机制
  • 批准号:
    1050701
  • 财政年份:
    2011
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant
Collaborative Research: Mechanisms of Signal Diversity in Communication
合作研究:通信中信号分集的机制
  • 批准号:
    0818390
  • 财政年份:
    2008
  • 资助金额:
    $ 70万
  • 项目类别:
    Continuing Grant

相似海外基金

Understanding and rewiring cellular behavior with synthetic biology approaches
用合成生物学方法理解和重新连接细胞行为
  • 批准号:
    10662938
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
Rewiring P450s for efficient biocatalysis
重新布线 P450 以实现高效生物催化
  • 批准号:
    2898080
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
    Studentship
Genetic Network Rewiring Between Distantly Related Eukaryotic Organisms
关系较远的真核生物之间的遗传网络重新布线
  • 批准号:
    495872
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
Rewiring networks for a pathogenic lifestyle
重新连接网络以适应致病的生活方式
  • 批准号:
    10893669
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
REWIRING CANCER-INDUCED ABNORMALITIES IN THE VASCULAR BARRIER
重塑血管屏障中癌症引起的异常
  • 批准号:
    10915752
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
Deconstructing and Rewiring RNA-RBP regulatory networks
解构和重新连接 RNA-RBP 调控网络
  • 批准号:
    EP/X029972/1
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
    Research Grant
Immunosuppression and Metabolic Rewiring in Tumor-infiltrating Neutrophils
肿瘤浸润中性粒细胞的免疫抑制和代谢重组
  • 批准号:
    10637160
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
Perturbation, Social Rewiring, and Population Dynamics in Animal Societies
动物社会中的扰动、社会重塑和种群动态
  • 批准号:
    2877835
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
    Studentship
Social connection: rewiring people and gorillas for wildlife conservation and One Health
社会联系:为野生动物保护和同一个健康而重新连接人和大猩猩
  • 批准号:
    22KF0376
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
In-depth characterization of signal rewiring by oncogenic kinase translocations
致癌激酶易位信号重连的深入表征
  • 批准号:
    495210
  • 财政年份:
    2023
  • 资助金额:
    $ 70万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了