Partial Identification of State Dependence

国家依赖性的部分识别

基本信息

  • 批准号:
    1756308
  • 负责人:
  • 金额:
    $ 17.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Many empirical questions in economics require the answer to some form of the following question: To what extent do past outcomes determine current and future outcomes? For example, if employers make hiring decisions based in part on the past employment outcomes of an applicant, then previous unemployment may cause an applicant to remain unemployed, if employers view this as a negative signal of the applicant's quality as a worker. Using data on employment outcomes to measure the extent to which this phenomenon occurs is a notoriously difficult problem. This proposal develops new statistical models for addressing this problem, both as it applies to employment dynamics, and to other similar problems in economics. The project advances the field by developing new methods for data analysis. The application to employment outcomes also advances the national prosperity by giving us better information about how unemployment affects long run job prospects. The fundamental conceptual difficulty with measuring state dependence is that the effect of past outcomes will confound with temporally persistent unobservable heterogeneity across agents. For example, observing in a panel that previously unemployed agents are less likely to be employed could be due to a negative causal effect of past unemployment, but it could also result if unemployed agents are less likely to be employed due to other unobservable factors such as preferences or productivity. To date, the vast majority of statistical methods designed to measure state dependence use variants of highly-parameterized dynamic binary choice models. These models depend on many strong assumptions, including arbitrary functional form restrictions on the shape of heterogeneity. They are quite likely to be severely misspecified in many applications. The goal of this proposal is to develop and apply transparent nonparametric approaches for identifying state dependence from unobserved heterogeneity. Owing to the difficulty of point identifying state dependence, the proposed methods use partial identification techniques. In particular, the PI develops a new dynamic potential outcomes model, studies its properties, and applies it to questions of state dependence in employment outcomes.
经济学中的许多实证问题都需要回答以下问题:过去的结果在多大程度上决定了当前和未来的结果?例如,如果雇主部分根据申请人过去的就业结果作出雇用决定,那么以前的失业可能会导致申请人继续失业,如果雇主认为这是申请人作为工人的素质的负面信号。利用就业结果数据来衡量这一现象发生的程度是一个众所周知的难题。这一建议为解决这一问题开发了新的统计模型,既适用于就业动态,也适用于经济学中的其他类似问题。该项目通过开发新的数据分析方法来推进该领域。 就业结果的应用还通过为我们提供有关失业如何影响长期就业前景的更好信息来促进国家繁荣。测量状态依赖的基本概念困难在于,过去结果的影响将与代理之间暂时持续的不可观察的异质性混淆。例如,在一个小组中观察到以前失业的代理人不太可能被雇用,这可能是由于过去失业的负面因果效应,但如果失业的代理人不太可能被雇用,也可能是由于其他不可观察的因素,如偏好或生产力。迄今为止,绝大多数用于测量状态依赖的统计方法都使用高度参数化的动态二元选择模型的变体。这些模型依赖于许多强有力的假设,包括对异质性形状的任意函数形式限制。在许多应用中,它们很可能被严重错误地指定。这个建议的目标是开发和应用透明的非参数方法来识别未观察到的异质性的状态依赖。由于点识别状态依赖的困难,所提出的方法使用部分识别技术。特别是,PI开发了一个新的动态潜在结果模型,研究其属性,并将其应用于就业结果的国家依赖问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Torgovitsky其他文献

Nonparametric Inference on State Dependence in Unemployment
失业中国家依赖性的非参数推断
Partial Identification of State Dependence
国家依赖性的部分识别
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Torgovitsky
  • 通讯作者:
    Alexander Torgovitsky
Representation and Hesitancy in Population Health Research: Evidence from a COVID-19 Antibody Study
人口健康研究中的代表性和犹豫:来自 COVID-19 抗体研究的证据
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Deniz Dutz;M. Greenstone;Ali Horta¸csu;Santiago E. Lacouture;M. Mogstad;A. Shaikh;Alexander Torgovitsky;Winnie van Dijk
  • 通讯作者:
    Winnie van Dijk
Ivmte: An R Package for Implementing Marginal Treatment Effect Methods
Ivmte:用于实现边际处理效果方法的 R 包
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joshua Shea;Alexander Torgovitsky
  • 通讯作者:
    Alexander Torgovitsky
Nonparametric Inference on State Dependence with Applications to Employment Dynamics
国家依赖性的非参数推断及其在就业动态中的应用
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Torgovitsky
  • 通讯作者:
    Alexander Torgovitsky

Alexander Torgovitsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Torgovitsky', 18)}}的其他基金

CAREER: Identification as Optimization
职业:识别作为优化
  • 批准号:
    1846832
  • 财政年份:
    2019
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Continuing Grant
Partial Identification of State Dependence
国家依赖性的部分识别
  • 批准号:
    1530538
  • 财政年份:
    2015
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant

相似国自然基金

相似海外基金

LEAPS-MPS: Machine Learning-guided Identification of Mechanically Stabilizing Solid-state Electrolytes
LEAPS-MPS:机器学习引导的机械稳定固态电解质的识别
  • 批准号:
    2316667
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Standard Grant
Identification of Distinct Biotypes in Clinical High Risk for Psychosis State Using Objective Brain-Based Biomarkers
使用客观的脑基生物标志物识别临床高风险精神病状态的不同生物型
  • 批准号:
    10646765
  • 财政年份:
    2023
  • 资助金额:
    $ 17.78万
  • 项目类别:
Identification of distributed neural sources of the auditory steady-state response in psychosis Biotypes
精神病生物型中听觉稳态反应的分布式神经源的识别
  • 批准号:
    10543156
  • 财政年份:
    2022
  • 资助金额:
    $ 17.78万
  • 项目类别:
Identification of seizure-generating brain areas in drug-resistant epilepsy using dynamic resting-state fMRI
使用动态静息态功能磁共振成像识别耐药性癫痫中癫痫发作的大脑区域
  • 批准号:
    463540
  • 财政年份:
    2022
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Operating Grants
Identification of distributed neural sources of the auditory steady-state response in psychosis Biotypes
精神病生物型中听觉稳态反应的分布式神经源的识别
  • 批准号:
    10373165
  • 财政年份:
    2022
  • 资助金额:
    $ 17.78万
  • 项目类别:
Identification of spatiotemporal brain activity patterns triggering global state changes in functional brain networks
识别触发功能性大脑网络全局状态变化的时空大脑活动模式
  • 批准号:
    21K15610
  • 财政年份:
    2021
  • 资助金额:
    $ 17.78万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
  • 批准号:
    10132232
  • 财政年份:
    2020
  • 资助金额:
    $ 17.78万
  • 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
  • 批准号:
    10372075
  • 财政年份:
    2020
  • 资助金额:
    $ 17.78万
  • 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
  • 批准号:
    10583462
  • 财政年份:
    2020
  • 资助金额:
    $ 17.78万
  • 项目类别:
Systems-level identification of key regulators deciding immune cell state
决定免疫细胞状态的关键调节因子的系统级识别
  • 批准号:
    9917215
  • 财政年份:
    2020
  • 资助金额:
    $ 17.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了