Collaborative Research: Probing the Metabolic and Electrical Interactions of Cable Bacteria in Anoxic Sediments
合作研究:探讨缺氧沉积物中电缆细菌的代谢和电相互作用
基本信息
- 批准号:1756877
- 负责人:
- 金额:$ 31.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Marine sediments represent the world's largest repository of stored organic carbon, and understanding how microorganisms break down this carbon is an imperative for understanding global carbon cycling. Yet long-standing questions remain regarding how networks of microorganisms work together to accomplish the complete breakdown of organic carbon in marine sediments. Sediment microbes interact in a myriad of ways that couple their metabolism to the break down of organic carbon, including by sharing products of metabolism. Accumulating evidence further suggests that some microorganisms can interact by transferring electrons directly to other unrelated microorganisms. This ability occurs across diverse microorganisms and appears to be widespread in the biosphere, particularly in anaerobic environments such as marine sediments. This project addresses emerging questions about the identity and metabolic linkages between microorganisms that work together in natural anaerobic marine and estuarine sediments to break down organic carbon. The investigators approach these questions by focusing on the influence of a keystone bacterium on its surrounding microbial community. "Cable bacteria" are a recently discovered group of long filamentous bacteria that act as electrical conductors in aquatic sediments providing a conduit for electrons to commute from deeper sulfidic sediments up to the surface oxygen layer by the process of centimeter-scale electron transport. Since their discovery about 6 years ago, these bacteria have been observed in a wide range of depositional sedimentary environments, often at extremely high cell densities. Where these bacteria are abundant, such as in coastal marine muds, they drive intense localized changes in pH and strongly influence the mineral cycling. This research explorew the direct and indirect influence of cable bacteria on the metabolic activity of associated microorganisms. This project also advance the education and training of two early-career investigators, two PhD students, and undergraduate students. The skills and expertise gained from these PhD research projects will enable the students to be competitive in academic pursuits and in bioinformatics and technology applications relevant to private industry. The scientific discoveries emerging from this work is being incorporated into undergraduate and graduate level courses in marine microbial ecology. The research team will reach out to the broader community by hosting public lectures promoting a better understanding of environmental microbial ecology. The proposed work is to investigate the role of cable bacteria in structuring sediment microbial communities. Due to their growth strategy and morphology, cable bacteria are particularly amenable to experimental manipulation, providing an outstanding opportunity to better understand community interactions among microorganisms in a natural and complex anaerobic environment. The investigators will explore the interactions and relationships between cable bacteria and their associated microbial community by manipulating the growth and activity of cable bacteria and quantifying the resultant microbial community response. Specifically, this project aims to (1) identify microorganisms whose growth is enhanced by cable bacteria, (2) identify metabolic processes linked with cable bacteria activity using metatranscriptomics, (3) test specific metabolic links between sediment microorganisms and cable bacteria activity using a DNA-stable isotope probing (SIP) approach, and (4) visually confirm the identity and quantify key microorganisms associated with cable bacteria using microscopy. As more is learned about the identity and the mechanisms by which microorganisms are metabolically linked in anoxic sediments, we will be better able to understand and make predictions about how microorganisms function in their environment and how they can be utilized in bioengineered systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
海洋沉积物是世界上最大的有机碳储存库,了解微生物如何分解这些碳对于了解全球碳循环至关重要。然而,关于微生物网络如何协同工作以完成海洋沉积物中有机碳的完全分解,长期存在的问题仍然存在。沉积物微生物以多种方式相互作用,将其代谢与有机碳的分解结合起来,包括通过共享代谢产物。越来越多的证据进一步表明,一些微生物可以通过直接将电子转移到其他无关的微生物来相互作用。这种能力发生在不同的微生物中,似乎在生物圈中广泛存在,特别是在海洋沉积物等厌氧环境中。该项目解决了有关微生物之间的身份和代谢联系的新问题,这些微生物在天然厌氧海洋和河口沉积物中共同作用,以分解有机碳。研究人员通过关注关键细菌对其周围微生物群落的影响来解决这些问题。"电缆细菌"是最近发现的一组长丝状细菌,它们在水生沉积物中充当电导体,通过厘米级的电子传输过程为电子从深层硫化物沉积物向上交换到表面氧层提供管道。自大约6年前发现以来,这些细菌已在广泛的沉积环境中被观察到,通常具有极高的细胞密度。在这些细菌丰富的地方,例如在沿海海洋泥浆中,它们会导致pH值发生强烈的局部变化,并强烈影响矿物质循环。本研究探讨了电缆细菌对相关微生物代谢活性的直接和间接影响。该项目还促进了两名早期职业调查员,两名博士生和本科生的教育和培训。从这些博士研究项目中获得的技能和专业知识将使学生在学术追求和生物信息学以及与私营企业相关的技术应用方面具有竞争力。这项工作的科学发现正在纳入海洋微生物生态学的本科生和研究生课程。该研究小组将通过举办公开讲座,促进对环境微生物生态学的更好理解,从而接触到更广泛的社区。拟议的工作是调查电缆细菌在构建沉积物微生物群落中的作用。由于其生长策略和形态,电缆细菌特别适合实验操作,为更好地了解自然和复杂厌氧环境中微生物之间的群落相互作用提供了绝佳的机会。研究人员将通过操纵电缆细菌的生长和活性并量化由此产生的微生物群落反应来探索电缆细菌及其相关微生物群落之间的相互作用和关系。具体而言,该项目旨在(1)识别其生长被电缆细菌增强的微生物,(2)使用元转录组学识别与电缆细菌活动相关的代谢过程,(3)使用DNA稳定同位素探测(SIP)方法测试沉积物微生物与电缆细菌活动之间的特定代谢联系,以及(4)使用显微镜目视确认与电缆细菌相关的关键微生物的身份并对其进行定量。随着对缺氧沉积物中微生物的身份和代谢联系机制的了解越来越多,我们将能够更好地理解和预测微生物在其环境中的功能,以及如何在生物工程系统中利用微生物。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Contrasting controls on seasonal and spatial distribution of marine cable bacteria ( Candidatus Electrothrix ) and Beggiatoaceae in seasonally hypoxic Chesapeake Bay
季节性缺氧切萨皮克湾海洋电缆细菌(Candidatus Electrothrix)和 Beggiatoaceae 季节和空间分布的对比控制
- DOI:10.1002/lno.12087
- 发表时间:2022
- 期刊:
- 影响因子:4.5
- 作者:Malkin, Sairah Y.;Liau, Pinky;Kim, Carol;Hantsoo, Kalev G.;Gomes, Maya L.;Song, Bongkeun
- 通讯作者:Song, Bongkeun
Molecular and optical characterization reveals the preservation and sulfurization of chemically diverse porewater dissolved organic matter in oligohaline and brackish Chesapeake Bay sediments
- DOI:10.1016/j.orggeochem.2021.104324
- 发表时间:2021-10
- 期刊:
- 影响因子:3
- 作者:L. Powers;L. Lapham;S. Malkin;A. Heyes;P. Schmitt‐Kopplin;M. Gonsior
- 通讯作者:L. Powers;L. Lapham;S. Malkin;A. Heyes;P. Schmitt‐Kopplin;M. Gonsior
Sedimentary Pyrite Formation in a Seasonally Oxygen‐Stressed Estuary: Potential Imprints of Microbial Ecology and Position‐Specific Isotope Fractionation
- DOI:10.1029/2022jg007324
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Kalev G. Hantsoo;M. Gomes;S. Malkin;D. Brenner;W. Kenney
- 通讯作者:Kalev G. Hantsoo;M. Gomes;S. Malkin;D. Brenner;W. Kenney
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sairah Malkin其他文献
Sairah Malkin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 31.83万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412550 - 财政年份:2024
- 资助金额:
$ 31.83万 - 项目类别:
Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
- 批准号:
2230729 - 财政年份:2023
- 资助金额:
$ 31.83万 - 项目类别:
Continuing Grant
Collaborative Research: PM: High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309273 - 财政年份:2023
- 资助金额:
$ 31.83万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323023 - 财政年份:2023
- 资助金额:
$ 31.83万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319142 - 财政年份:2023
- 资助金额:
$ 31.83万 - 项目类别:
Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
- 批准号:
2323022 - 财政年份:2023
- 资助金额:
$ 31.83万 - 项目类别:
Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
- 批准号:
2319144 - 财政年份:2023
- 资助金额:
$ 31.83万 - 项目类别:
Standard Grant
Collaborative Research: RUI: PM:High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:RUI:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309274 - 财政年份:2023
- 资助金额:
$ 31.83万 - 项目类别:
Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
- 批准号:
2230891 - 财政年份:2023
- 资助金额:
$ 31.83万 - 项目类别:
Continuing Grant