Bilateral BBSRC-NSF/BIO: Asymmetric division and the temporal dynamics of cell motility
双边 BBSRC-NSF/BIO:不对称分裂和细胞运动的时间动态
基本信息
- 批准号:1758081
- 负责人:
- 金额:$ 15.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This collaborative project between researchers in the US (Beth Israel Deaconess Medical Center) and the UK (University of Manchester) aims to define the fundamental mechanisms controlling cell migration during organ development. In growing tissues, cells usually divide symmetrically to produce two identical daughter cells. However, in some instances cell divisions are asymmetric and give rise to intrinsically distinct daughters that have different characteristics including the ability to move (or motility). This project will explore the molecular and cellular basis of post-cell division asymmetry in cell motility and define the functional role of asymmetric divisions in the control of cell migration during tissue growth. Not only will this research generate freely available novel computational methods and analysis tools suitable for a wide array of applications, the findings of this work will have wide-reaching implications for understanding the control of cell migration across a plethora of cellular systems and organisms. Through its broader impacts, the project will additionally expose undergraduate and high school students (with emphasis on recruiting underrepresented groups) to integrated cross-disciplinary computational / experimental scientific approaches and provide hands-on experience of international collaborative research techniques upon the creation of several new, targeted, interactive Global Interface Science (GIS) workshops. Moreover, guidance on implementing similar GIS workshops anywhere worldwide will be widely disseminated via online media. Asymmetric cell division (ACD) specifies differential daughter cell fates in many systems, but has never before been implicated in determining the temporal dynamics of cell motility. This project will define how ACD acts as a novel symmetry-breaking mechanism to ensure daughter cells acquire distinct motilities during tissue growth. An integrated in silico and in vivo approach will be taken, innovating a novel multiscale hybrid, spatiotemporal agent-based model (ABM) that will inform single-cell live imaging experiments of endothelial cells in zebrafish embryos. These studies will probe ACD in motile cells, validate model predictions and altogether elucidate a previously unexplored role for mitosis in the control of migration. In particular, the interplay of ACD with cell signaling, geometry and mechanical motility cues across different scales, from the molecular to the cellular will be investigated through the following tasks: A) develop new modeling methodologies to investigate the role of localized intracellular dynamics in the establishment of asymmetric post-mitotic motility and functionally validate model predictions at sub-cellular resolution in vivo; B) Predict the effects of ACD-driven differences in cell architecture on motility dynamics in silico alongside quantification of dynamic alterations in cell architecture occurring during division in vivo; C) quantify pre- and post-mitotic fluctuations in cell tension at single-cell resolution in vivo and define the interplay of cell tension with the induction of ACD and differential motility in silico and in vivo. The products of this research will include novel computational ABM models and image analysis software, which will uniquely enable studies of key aspects of cell migration and will be made freely available to the wider scientific community. In additional broader impacts, the PIs will organize international workshops to provide a platform for promoting the widespread use of similar integrated in silico / in vivo approaches in studies of tissue morphogenesis across diverse cellular systems and organisms.This collaborative US/UK project is supported by the US National Science Foundation and the UK Biotechnology and Biological Sciences Research Council. Within NSF, the award is cofunded by the Division of Molecular And Cellular Biosciences and the Division of Chemical, Bioengineering, Environmental and Transport Systems.
美国(贝斯以色列女执事医学中心)和英国(曼彻斯特大学)的研究人员之间的这个合作项目旨在确定器官发育过程中控制细胞迁移的基本机制。在生长的组织中,细胞通常对称分裂产生两个相同的子细胞。然而,在某些情况下,细胞分裂是不对称的,并产生具有不同特征的内在不同的子体,包括移动(或运动)的能力。 该项目将探索细胞运动中细胞分裂后不对称性的分子和细胞基础,并确定组织生长过程中细胞迁移控制中不对称分裂的功能作用。这项研究不仅将产生适用于广泛应用的免费可用的新型计算方法和分析工具,而且这项工作的发现将对理解细胞迁移在众多细胞系统和生物体中的控制产生广泛的影响。通过其更广泛的影响,该项目还将使本科生和高中生(重点是招募代表性不足的群体)接触到综合的跨学科计算/实验科学方法,并在创建几个新的,有针对性的,互动的全球界面科学(GIS)研讨会时提供国际合作研究技术的实践经验。此外,将通过在线媒体广泛传播关于在世界各地举办类似地理信息系统讲习班的指导意见。不对称细胞分裂(ACD)在许多系统中指定不同的子细胞命运,但以前从未涉及确定细胞运动的时间动力学。该项目将定义ACD如何作为一种新的破膜机制,以确保子细胞在组织生长过程中获得不同的运动性。将采取一种集成的计算机和体内方法,创新一种新的多尺度混合,基于时空代理的模型(ABM),该模型将为斑马鱼胚胎内皮细胞的单细胞活体成像实验提供信息。这些研究将探测运动细胞中的ACD,验证模型预测,并共同阐明有丝分裂在控制迁移中的先前未探索的作用。特别地,ACD与细胞信号传导、几何和机械运动线索的相互作用将通过以下任务进行研究:A)开发新的建模方法以研究局部细胞内动力学在建立不对称有丝分裂后运动中的作用,并在体内亚细胞分辨率下功能性地验证模型预测; B)计算机模拟预测ACD驱动的细胞结构差异对运动动力学的影响,同时定量体内分裂期间发生的细胞结构的动态变化; C)量化单个细胞的有丝分裂前后细胞张力的波动,细胞分辨率在体内,并确定细胞张力与ACD的诱导和差异运动在计算机和体内的相互作用。这项研究的产品将包括新的计算ABM模型和图像分析软件,这将独特地使细胞迁移的关键方面的研究,并将免费提供给更广泛的科学界。在其他更广泛的影响,PI将组织国际研讨会,以提供一个平台,促进在不同的细胞系统和生物体的组织形态发生的研究中广泛使用类似的集成在硅片/在体内的方法。这个美国/英国合作项目是由美国国家科学基金会和英国生物技术和生物科学研究理事会支持。 在NSF内部,该奖项由分子和细胞生物科学部以及化学,生物工程,环境和运输系统部共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katie Bentley其他文献
Adaptive behaviour through morphological plasticity in natural and artificial systems
自然和人工系统中形态可塑性的适应性行为
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Katie Bentley - 通讯作者:
Katie Bentley
DIATOM COLONY FORMATION: A COMPUTATIONAL STUDY PREDICTS A SINGLE MECHANISM CAN PRODUCE BOTH LINKAGE AND SEPARATION VALVES DUE TO AN ENVIRONMENTAL SWITCH 1
硅藻菌落形成:一项计算研究预测,由于环境切换,单个机制可以同时产生连接阀和分离阀 1
- DOI:
10.1111/j.1529-8817.2012.01176.x - 发表时间:
2012 - 期刊:
- 影响因子:2.9
- 作者:
Katie Bentley;C. Clack;E. Cox - 通讯作者:
E. Cox
The Artificial Cytoskeleton for Lifetime Adaptation of Morphology
用于形态学终生适应的人工细胞骨架
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
Katie Bentley;C. Clack - 通讯作者:
C. Clack
Artificial life in the fight against cancer: Extended abstract of invited keynote lecture
人工生命对抗癌症:特邀主题演讲扩展摘要
- DOI:
10.1109/alife.2013.6602444 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Katie Bentley - 通讯作者:
Katie Bentley
Morphological Plasticity: Environmentally Driven Morphogenesis
形态可塑性:环境驱动的形态发生
- DOI:
10.1007/11553090_13 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Katie Bentley;C. Clack - 通讯作者:
C. Clack
Katie Bentley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katie Bentley', 18)}}的其他基金
Bilateral BBSRC-NSF/BIO: Asymmetric division and the temporal dynamics of cell motility
双边 BBSRC-NSF/BIO:不对称分裂和细胞运动的时间动态
- 批准号:
1517390 - 财政年份:2015
- 资助金额:
$ 15.12万 - 项目类别:
Continuing Grant
相似海外基金
Bilateral BBSRC-NSF/BIO: CIBR: Structural modeling of interactome to assess phenotypic effects of genetic variation.
双边 BBSRC-NSF/BIO:CIBR:相互作用组的结构模型,用于评估遗传变异的表型效应。
- 批准号:
1917263 - 财政年份:2019
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO: Bayesian Quantitative Proteomics
双边 BBSRC-NSF/BIO:贝叶斯定量蛋白质组学
- 批准号:
2016487 - 财政年份:2019
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO Collaborative Research: ABI Development: A Critical Assessment of Protein Function Annotation
BBSRC-NSF/BIO 双边合作研究:ABI 开发:蛋白质功能注释的批判性评估
- 批准号:
1854685 - 财政年份:2018
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Bilateral NSF/BIO-BBSRC The roles of contact-dependent inhibition in building mixed bacterial communities
双边 NSF/BIO-BBSRC 接触依赖性抑制在建立混合细菌群落中的作用
- 批准号:
BB/M023044/1 - 财政年份:2016
- 资助金额:
$ 15.12万 - 项目类别:
Research Grant
Bilateral NSF/BIO-BBSRC: Bayesian Quantitative Proteomics
双边 NSF/BIO-BBSRC:贝叶斯定量蛋白质组学
- 批准号:
BB/M024954/2 - 财政年份:2016
- 资助金额:
$ 15.12万 - 项目类别:
Research Grant
Bilateral NSF/BIO-BBSRC Synthesis of Microcompartments in Plants for Enhanced Carbon Fixation
NSF/BIO-BBSRC 双边合成植物微室以增强碳固定
- 批准号:
BB/N01832X/1 - 财政年份:2016
- 资助金额:
$ 15.12万 - 项目类别:
Research Grant
Bilateral NSF/BIO-BBSRC- Remodelling Replication Roadblocks: Regulatory Systems that Integrate DNA Replication, Recombination and Protein Modification
双边 NSF/BIO-BBSRC-重塑复制障碍:整合 DNA 复制、重组和蛋白质修饰的监管系统
- 批准号:
1642283 - 财政年份:2016
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Bilateral NSF/BIO-BBSRC: Engineering Tunable Portal Hybrid Nanopores for High-Resolution Sequence Mapping
双边 NSF/BIO-BBSRC:工程可调谐门户混合纳米孔用于高分辨率序列图谱
- 批准号:
1645671 - 财政年份:2016
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Bilateral NSF/BIO-BBSRC: Synthetic DNA Nanopores for Selective Transmembrane Transport
双边 NSF/BIO-BBSRC:用于选择性跨膜运输的合成 DNA 纳米孔
- 批准号:
1644745 - 财政年份:2016
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant
Collaborative Research: Bilateral BBSRC-NSF/BIO: Synthetic Biology for Lignin Utilization
合作研究:双边 BBSRC-NSF/BIO:木质素利用的合成生物学
- 批准号:
1614953 - 财政年份:2016
- 资助金额:
$ 15.12万 - 项目类别:
Standard Grant