NSFGEO-NERC: Latest Pleistocene-Holocene incremental slip record of the Kekerengu-Jordan fault system, northern South Island, New Zealand

NSFGEO-NERC:新西兰南岛北部 Kekerengu-Jordan 断层系统最新更新世-全新世增量滑移记录

基本信息

  • 批准号:
    1759252
  • 负责人:
  • 金额:
    $ 35.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

The standard model for rupture of large earthquakes along strike-slip faults is that the slip that generates the earthquake occurs on a single surface. The November 14, 2016 Kaikoura, New Zealand, magnitude 7.8 earthquake shook up this thinking about fault slip behavior. In what initially seemed to be an event resulting from slip along a single fault, turned out to be more complex with slip jumping from one fault to another within a network of faults called the Marlborough fault system. In this project, a research team from the University of Southern California, United Kingdom, and New Zealand will use a variety of cutting-edge methods to reconstruct the slip and paleo-earthquake history of one of the Marlborough fault system faults, the Kekerengu-Jordan fault system, which experienced about 12 meters of slip in the 2016 event. Data collected in this project would be used in conjunction with data from other faults in system to better understand earthquake recurrence rates and, more importantly, the temporal and spatial linkage between these faults, something that was clearly not well understood before the Kaikoura earthquake. Understanding the threat from major earthquakes to an increasingly urbanized American population is of critical importance for facilitating proactive and efficient measures to reduce future loss of life and property. Yet understanding of what to expect in terms of the occurrence of large earthquakes in time and space remains severely limited by the current lack of information about how entire systems of inter-connected earthquake faults store and release seismic energy in large, potentially damaging earthquakes. Comprehensive data sets, such as those that will result from this project will reveal how the major faults in a fault system interact with one another to generate potentially damaging earthquakes. These kinds of observations will, in turn, allow for better forecasting of what to expect from similar fault networks in the United States, particularly in earthquake-prone California, but more generally for all of the major faults that underlie large parts of the country. The project has potential to benefit society or advance desired societal outcomes through full participation of women in STEM, increased public scientific literacy with STEM through outreach activities, improved well-being of individuals in society by better understanding of fundamental processes underlying earthquakes that would improve the capability to model earthquake hazards, development of a diverse, globally competitive STEM workforce through graduate student training, and increased partnerships through international collaboration.The primary aim is to advance understanding of the collective behavior of regional fault networks, particularly the importance of emergent phenomena such as earthquake clusters and strain transients that may not be expected in the current understanding of earthquake physics and that are not accounted for in current seismic hazard assessment strategies. Mounting evidence suggests that the occurrence of large earthquakes on both single faults and fault systems is not a random process, with increasing observations of temporal and spatial earthquake clustering, changes in incremental fault slip rates, variations in fault loading rates, and potentially coordinated waxing and waning of slip on mechanically complementary faults in regional fault systems. Although a thorough understanding of both the causes and generality of such phenomena is of basic importance for fault mechanics, earthquake physics, and more accurate assessment of seismic hazard, evaluation of the importance of these behaviors has been severely data limited. In particular, there are too few comprehensive paleo-earthquake and incremental fault slip rate data sets to fully assess the collective behavior of major plate-boundary fault systems in time and space. This study focuses on the Pacific-Australia plate boundary in northern South Island New Zealand in order to document a complete latest-Pleistocene-Holocene (15 ka-present) record of incremental plate boundary slip encompassing all major structures in the system. The research team will build on previous work by developing robust records for the Kekerengu-Jordan fault system, an 85-km-long, oblique reverse-dextral fault system, which is the fastest-slipping fault in the onshore part of the plate boundary at 25-30 mm/year. Slip on the Kekerengu-Jordan fault system generated most of the moment release in the 2016 Mw=7.8 Kaikoura earthquake. The new post-IR IRSL225 luminescence dating protocol will be used at key sites on the Kekerengu-Jordan fault system, and at additional sites located with the new post-earthquake high-resolution lidar data collected by the New Zealand government. This new luminescence dating technique provides precise and reproducible dating of carbon-poor sediments typical of those in the study area with precision roughly equal to that of radiocarbon dating. Combining incremental fault offsets and trench observations with post-IR IRSL225 dating, and carbon-14 analysis will yield detailed fault slip rates and earthquake ages along the fault system spanning individual ruptures back though several dozen earthquakes. In conjunction with existing data sets from both the onshore and offshore faults, including the subduction megathrust that underlies the Kekerengu-Jordan fault system, the research will facilitate a comprehensive, system-level analysis of plate-boundary strain release through time and space during latest Pleistocene-Holocene time.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大地震沿着走滑断层破裂的标准模型是,产生地震的滑动发生在单个表面上。2016年11月14日新西兰凯库拉7.8级地震动摇了这种关于断层滑动行为的思考。最初似乎是一个事件造成的滑动沿着一个单一的故障,原来是更复杂的滑动跳跃从一个故障到另一个网络的故障称为马尔伯勒故障系统。在该项目中,来自英国南加州大学和新西兰的研究团队将使用多种尖端方法重建马尔伯勒断层系统断层之一--凯克伦古-约旦断层系统的滑动和古地震历史,该断层系统在2016年的事件中经历了约12米的滑动。在这个项目中收集的数据将与来自系统中其他断层的数据一起使用,以更好地了解地震复发率,更重要的是,这些断层之间的时间和空间联系,这在凯库拉地震之前显然没有得到很好的了解。了解大地震对日益城市化的美国人口的威胁对于促进积极有效的措施以减少未来的生命和财产损失至关重要。然而,由于目前缺乏关于整个相互连接的地震断层系统如何在大的、潜在的破坏性地震中储存和释放地震能量的信息,对大地震在时间和空间上发生的预期的理解仍然受到严重限制。全面的数据集,如将从这个项目中产生的数据集,将揭示断层系统中的主要断层如何相互作用,以产生潜在的破坏性地震。反过来,这类观测将有助于更好地预测美国类似断层网的情况,特别是在地震多发的加州,但更普遍的是,对美国大部分地区的所有主要断层。该项目有可能通过以下方式造福社会或促进预期的社会成果:妇女充分参与STEM,通过外联活动提高公众对STEM的科学素养,通过更好地了解地震的基本过程改善社会中个人的福祉,这将提高模拟地震灾害的能力,通过研究生培训发展多样化的具有全球竞争力的STEM劳动力,主要目的是促进对区域断层网络集体行为的理解,特别是对地震集群和应变瞬变等紧急现象的重要性的理解,这些现象在目前对地震物理学的理解中可能无法预料,并且在目前的地震灾害评估策略中也没有考虑到。越来越多的证据表明,大地震的发生在单一的故障和故障系统是不是一个随机的过程,越来越多的时间和空间的地震集群的观察,增量断层滑动率的变化,在故障加载率的变化,以及潜在的协调上蜡和上蜡的滑动区域断层系统中的机械互补故障。尽管对这些现象的原因和普遍性的透彻理解对于断层力学、地震物理学和更准确地评估地震危险性具有基本的重要性,但对这些行为的重要性的评估一直受到严重的数据限制。特别是,有太少的全面的古地震和增量断层滑动速率数据集,以充分评估的集体行为的主要板块边界断层系统在时间和空间。这项研究的重点是太平洋-澳大利亚板块边界在新西兰南岛北方,以记录一个完整的最新更新世-全新世(15 ka-目前)的增量板块边界滑动记录,包括所有主要结构的系统。研究小组将在以前工作的基础上,为Kekerengu-Jordan断层系统开发可靠的记录,这是一个85公里长的斜向反向右旋断层系统,是板块边界陆上部分滑动最快的断层,速度为25-30毫米/年。Kekerengu-Jordan断层系统的滑动在2016年Mw=7.8的Kaikoura地震中产生了大部分的力矩释放。新的红外后IRSL 225发光测年协议将用于Kekerengu-Jordan断层系统的关键站点,以及新西兰政府收集的新的地震后高分辨率激光雷达数据的其他站点。这种新的发光测年技术提供了精确和可重复的测年的贫碳沉积物的典型研究领域的精度大致相当于放射性碳测年。将增量断层偏移和海沟观测与后IR IRSL 225测年和碳-14分析相结合,将产生详细的断层滑动速率和地震年龄,沿着断层系统跨越几十次地震中的单个断裂。结合来自陆上和海上断层的现有数据集,包括位于Kekerengu-Jordan断层系统下方的俯冲巨型逆冲断层,该研究将促进全面,晚更新世以来板块边界应变时空释放系统分析该奖项反映了NSF的法定使命,并通过使用基金会的知识产权进行评估,优点和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Dolan其他文献

Early Palliative Care Involvement for Children with Cancer (S763)
  • DOI:
    10.1016/j.jpainsymman.2014.11.242
  • 发表时间:
    2015-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Laila Mahmood;Ann Dozier;Denise Casey;James Dolan;David Korones
  • 通讯作者:
    David Korones
Lattice angles of lattice polygons
晶格多边形的晶格角
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    James Dolan;Oleg Karpenkov
  • 通讯作者:
    Oleg Karpenkov
A Comparison of Post-Implant Day 0 vs Day 30 – Dosimetry for Low-Dose-Rate Interstitial Prostate Brachytherapy
  • DOI:
    10.1016/j.brachy.2010.02.121
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Shasha;Thomas Nabhani;Robert Salant;James Dolan;Rajesh Patel;Louis B. Harrison
  • 通讯作者:
    Louis B. Harrison
1356 COST EFFECTIVENESS ANALYSIS OF CLINICAL STRATEGIES USED TO MANAGE STRESS URINARY INCONTINENCE AT THE TIME OF REPAIR OF PELVIC ORGAN PROLAPSE IN WOMEN
  • DOI:
    10.1016/j.juro.2012.02.1739
  • 发表时间:
    2012-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Varuna Raizada;Erin Duecy;James Dolan
  • 通讯作者:
    James Dolan
Prostate Cancer Dose Escalation via Simultaneous Integrated Brachytherapy Boost Delivered via Radioactive I125 vs. Pd103 Seeds Followed by External Beam Radiation Therapy
  • DOI:
    10.1016/j.brachy.2014.02.424
  • 发表时间:
    2014-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Waleed F. Mourad;Barry S. Rosenstein;Rania A. Shourbaji;Robert Ambrose;James Dolan;James Dolan;Joseph Santoro;Rudolph Woode;Mauricio Gamez;John J. Lukens;Louis B. Harrison;Daniel Shasha
  • 通讯作者:
    Daniel Shasha

James Dolan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Dolan', 18)}}的其他基金

Collaborative Research: Paired paleoseismic and slip rate analysis of the central Garlock fault: Towards a true dated path of incremental slip on a major strike-slip fault
合作研究:加洛克中央断层的成对古地震和滑动率分析:寻找主要走滑断层上增量滑动的真正过时路径
  • 批准号:
    1650377
  • 财政年份:
    2017
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Resilience-based Seismic Design Methodology for Tall Wood Buildings
合作研究:基于弹性的高层木结构抗震设计方法
  • 批准号:
    1635156
  • 财政年份:
    2016
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Standard Grant
NEESR Planning/Collaborative Research: Engineered Timber Structural Systems for Seismically Resilient Tall Buildings
NEESR 规划/合作研究:抗震高层建筑的工程木结构系统
  • 批准号:
    1344590
  • 财政年份:
    2013
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Towards an Understanding of the Collective Behavior of Regional Fault Networks: The Marlborough Fault System, New Zealand
合作研究:了解区域断层网络的集体行为:新西兰马尔堡断层系统
  • 批准号:
    1321914
  • 财政年份:
    2013
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Continuing Grant
Analysis of the Shallow Slip Deficit Using Sub-Pixel Image Correlation: Implications for Fault Evolution, Slip Rates, and Seismic Hazards
使用子像素图像相关分析浅层滑移缺陷:对断层演化、滑移率和地震灾害的影响
  • 批准号:
    1147436
  • 财政年份:
    2012
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Spatial and Temporal Evolution of an Active Blind-Thrust Fault from Inception to the Most Recent Earthquake
合作研究:活动盲冲断层从发生到最近地震的时空演化
  • 批准号:
    0711170
  • 财政年份:
    2007
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: Determination of Slip Rates on the Death Valley-Fish Lake Valley Fault System: Toward an Understanding of the Spatial & Temporal Extent of Strain Transi
合作研究:死亡谷-鱼湖谷断层系统滑动率的确定:了解空间
  • 批准号:
    0537901
  • 财政年份:
    2006
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Standard Grant
Collaborative Research: How Constant are Fault Slip Rates in Time and Space? An Analysis of the North and East Anatolian Faults, Turkey
合作研究:断层滑动率在时间和空间上的恒定程度如何?
  • 批准号:
    0409767
  • 财政年份:
    2004
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Continuing Grant
Collaborative Research (USC and UCSB): Direct Observation of Depth Variation in Fault Zone Structure Through and Below the Seismogenic Crust
合作研究(USC 和 UCSB):直接观测发震地壳及其下方的断层带结构的深度变化
  • 批准号:
    0309542
  • 财政年份:
    2004
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Continuing Grant
Collaborative Research (LDEO and USC): Submarine Earthquake Geology in the Marmara Seismic Gap
合作研究(LDEO 和 USC):马尔马拉地震间隙的海底地震地质学
  • 批准号:
    0096612
  • 财政年份:
    2001
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Standard Grant

相似海外基金

NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    NE/X000656/1
  • 财政年份:
    2025
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Research Grant
NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
  • 批准号:
    NE/Z000246/1
  • 财政年份:
    2025
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Research Grant
NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    NE/Z000254/1
  • 财政年份:
    2025
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Research Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334798
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317936
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
  • 批准号:
    2317938
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
  • 批准号:
    2341238
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Standard Grant
NERC-NSFGEO: Imaging the magma storage region and hydrothermal system of an active arc volcano
NERC-NSFGEO:对活弧火山的岩浆储存区域和热液系统进行成像
  • 批准号:
    2404029
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334541
  • 财政年份:
    2024
  • 资助金额:
    $ 35.41万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了