Collaborative Research: ABI Development: The next stage in protein-protein docking

合作研究:ABI 开发:蛋白质-蛋白质对接的下一阶段

基本信息

  • 批准号:
    1759277
  • 负责人:
  • 金额:
    $ 31.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

Protein-protein interactions are integral to many mechanisms of cellular control, including protein localization, allosteric and gene regulation and signal transduction, and therefore their characterization is an important task for both experimental and computational approaches to systems biology. Genome-wide proteomics studies provide a growing list of putative protein-protein interactions, and demonstrate that most if not all proteins have interacting partners in the cell. However, these techniques can only identify whether two proteins possibly interact. A full comprehension of how proteins bind and form complexes can only come from high-resolution three-dimensional structures, since they provide the atomic details necessary to understand how the interactions occur and how the high degree of specificity can be achieved. While the most complete structural characterization is provided by X-ray crystallography, many biologically important interactions occur in weak, transient complexes that are not amenable to direct experimental analysis, even when both proteins can be isolated and their structures determined. The goal of this project is to further improve the protein-protein docking server ClusPro that, starting from the structures of component proteins, attempts to determine the structure of their complexes with accuracy close to that provided by X-ray crystallography. The server at https://cluspro.org already has close to 10,000 registered users, although it can also be used without registration. Docked structures generated by ClusPro have been reported in over 600 research papers. The public server is important for biological and chemical scientists who may not have extensive computational experience but still will be able to use state of the art docking methods. The increased availability of protein complex structures will have major impact in many areas of biology, biochemistry, and biotechnology. The project has six aims focusing on problems of increasing difficulty. First, a new opportunity to progress is provided by earlier development of the manifold fast Fourier transform (FFT) correlation algorithm, which increased the speed of sampling by orders of magnitude. An additional advantage of the method is that increasing the number of correlation function terms is computationally inexpensive. Therefore, Aim 1 is the development and implementation of complex energy functions, including distance-dependent and three-body potentials for scoring. Second, recently developed methods have shown considerable promise in predicting contacts between residues in proteins using evolutionary covariance information. The problem is that these methods require large numbers of evolutionarily related sequences of interacting proteins to robustly assess the extent of residue covariation. Aim 2 is exploring how sequence information can be used for extracting inter-protein contacts to improve docking results even with somewhat limited number of sequences. Third, with the increase in the number of protein complex structures, there is increasing need for integrating direct docking and template-based prediction methods, and several strategies will be explored to implement such integration. Fourth, the docking method will be modified to work optimally with homology models rather than X-ray structures of interacting proteins. The fifth aim is exploring new approaches to the docking of proteins with substantial backbone conformational changes upon binding. The sixth and final aim is implementing the newly developed algorithms in the ClusPro server.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
蛋白质-蛋白质相互作用是许多细胞控制机制的组成部分,包括蛋白质定位,变构和基因调控以及信号转导,因此它们的表征是系统生物学实验和计算方法的重要任务。全基因组蛋白质组学研究提供了越来越多的假定蛋白质-蛋白质相互作用的列表,并证明大多数(如果不是所有的话)蛋白质在细胞中具有相互作用的伴侣。然而,这些技术只能确定两种蛋白质是否可能相互作用。对蛋白质如何结合和形成复合物的全面理解只能来自高分辨率的三维结构,因为它们提供了理解相互作用如何发生以及如何实现高度特异性所需的原子细节。 虽然最完整的结构表征是由X射线晶体学提供的,但许多生物学上重要的相互作用发生在弱的、短暂的复合物中,这些复合物不适合直接的实验分析,即使两种蛋白质都可以分离并确定其结构。该项目的目标是进一步改进蛋白质-蛋白质对接服务器MSPPro,从组分蛋白质的结构出发,试图以接近X射线晶体学的精度确定其复合物的结构。https://cluspro.org的服务器已经有近10 000名注册用户,尽管也可以不注册使用。Docked的结构已经在超过600篇研究论文中被报道。公共服务器对于生物和化学科学家来说很重要,他们可能没有丰富的计算经验,但仍然能够使用最先进的对接方法。蛋白质复合物结构的增加将在生物学、生物化学和生物技术的许多领域产生重大影响。该项目有六个目标,侧重于日益困难的问题。首先,一个新的机会,以进步提供了早期发展的流形快速傅立叶变换(FFT)相关算法,提高了采样速度的数量级。该方法的另一个优点是增加相关函数项的数量在计算上是便宜的。因此,目标1是开发和实施复杂的能量功能,包括距离依赖性和三体潜能评分。其次,最近开发的方法已经显示出相当大的承诺,在预测蛋白质中的残基之间的接触,使用进化协方差信息。问题是,这些方法需要大量的相互作用蛋白质的进化相关序列,以稳健地评估残基协变的程度。目标2是探索如何使用序列信息提取蛋白质间的接触,以改善对接结果,即使有一定数量的序列。第三,随着蛋白质复合物结构数量的增加,越来越需要整合直接对接和基于模板的预测方法,并将探索几种策略来实现这种整合。第四,对接方法将被修改,以最佳地与同源模型,而不是相互作用的蛋白质的X射线结构。第五个目标是探索新的方法来对接蛋白质与大量的骨干构象变化后,结合。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Modeling beta-sheet peptide-protein interactions: Rosetta FlexPepDock in CAPRI rounds 38-45.
  • DOI:
    10.1002/prot.25871
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Khramushin A;Marcu O;Alam N;Shimony O;Padhorny D;Brini E;Dill KA;Vajda S;Kozakov D;Schueler-Furman O
  • 通讯作者:
    Schueler-Furman O
Performance and Its Limits in Rigid Body Protein-Protein Docking
  • DOI:
    10.1016/j.str.2020.06.006
  • 发表时间:
    2020-09-01
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Desta, Israel T.;Porter, Kathryn A.;Vajda, Sandor
  • 通讯作者:
    Vajda, Sandor
ClusPro in rounds 38 to 45 of CAPRI: Toward combining template-based methods with free docking.
  • DOI:
    10.1002/prot.25887
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Padhorny D;Porter KA;Ignatov M;Alekseenko A;Beglov D;Kotelnikov S;Ashizawa R;Desta I;Alam N;Sun Z;Brini E;Dill K;Schueler-Furman O;Vajda S;Kozakov D
  • 通讯作者:
    Kozakov D
Improved Modeling of Peptide-Protein Binding Through Global Docking and Accelerated Molecular Dynamics Simulations
  • DOI:
    10.3389/fmolb.2019.00112
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Jinan Wang;Andrey Alekseenko;D. Kozakov;Yinglong Miao
  • 通讯作者:
    Jinan Wang;Andrey Alekseenko;D. Kozakov;Yinglong Miao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dmytro Kozakov其他文献

Dmytro Kozakov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dmytro Kozakov', 18)}}的其他基金

AF:Small: Algorithms for Fast Simulation of Macromolecular Interaction Systems
AF:Small:大分子相互作用系统快速模拟算法
  • 批准号:
    1816314
  • 财政年份:
    2018
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
AF: Small: Manifold optimization algorithms for protein-protein docking
AF:小:蛋白质-蛋白质对接的多种优化算法
  • 批准号:
    1645512
  • 财政年份:
    2015
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
AF: Small: Manifold optimization algorithms for protein-protein docking
AF:小:蛋白质-蛋白质对接的多种优化算法
  • 批准号:
    1527292
  • 财政年份:
    2015
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Sustainable ABI: Arctos Sustainability
合作研究:可持续 ABI:Arctos 可持续性
  • 批准号:
    2034568
  • 财政年份:
    2021
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: FuTRES, an Ontology-Based Functional Trait Resource for Paleo- and Neo-biologists
合作研究:ABI 创新:FuTRES,为古生物学家和新生物学家提供的基于本体的功能性状资源
  • 批准号:
    2201182
  • 财政年份:
    2021
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Symbiota2: Enabling greater collaboration and flexibility for mobilizing biodiversity data
协作研究:ABI 开发:Symbiota2:为调动生物多样性数据提供更大的协作和灵活性
  • 批准号:
    2209978
  • 财政年份:
    2021
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Towards Computational Exploration of Large-Scale Neuro-Morphological Datasets
合作研究:ABI 创新:大规模神经形态数据集的计算探索
  • 批准号:
    2028361
  • 财政年份:
    2020
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Enabling machine-actionable semantics for comparative analyses of trait evolution
合作研究:ABI 创新:启用机器可操作的语义以进行特征进化的比较分析
  • 批准号:
    2048296
  • 财政年份:
    2020
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Integrated platforms for protein structure and function predictions
合作研究:ABI开发:蛋白质结构和功能预测的集成平台
  • 批准号:
    2021734
  • 财政年份:
    2020
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Biofilm Resource and Information Database (BRaID): A Tool to Fuse Diverse Biofilm Data Types
合作研究:ABI 创新:生物膜资源和信息数据库 (BRaID):融合多种生物膜数据类型的工具
  • 批准号:
    2027203
  • 财政年份:
    2019
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Development: Building a Pipeline for Validation, Curation and Archiving of Integrative/Hybrid Models
合作研究:ABI 开发:构建集成/混合模型的验证、管理和归档管道
  • 批准号:
    1756250
  • 财政年份:
    2018
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Continuing Grant
Collaborative Research: ABI Development: The next stage in protein-protein docking
合作研究:ABI 开发:蛋白质-蛋白质对接的下一阶段
  • 批准号:
    1759472
  • 财政年份:
    2018
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Quantifying biogeographic history: a novel model-based approach to integrating data from genes, fossils, specimens, and environments
合作研究:ABI 创新:量化生物地理历史:一种基于模型的新颖方法来整合来自基因、化石、标本和环境的数据
  • 批准号:
    1759729
  • 财政年份:
    2018
  • 资助金额:
    $ 31.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了