FRG: Collaborative Research: Algebra and Geometry Behind Link Homology

FRG:协作研究:链接同调背后的代数和几何

基本信息

  • 批准号:
    1760264
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-07-15 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

The Hecke algebra and its generalizations are central objects in modern representation theory. They naturally appear in number theory, representation theory, algebraic geometry, and even low-dimensional topology. A categorification of the Hecke algebra was used to define a new topological invariant of knots and links, known as HOMFLY-PT homology. However, it is extremely difficult to compute this invariant from the definition. The project is focused on understanding the algebraic, geometric, and combinatorial structure of link homology and categorified Hecke algebras, with the goal of unifying, deepening, and clarifying connections between these concepts.Recent progress strongly indicates a connection between the HOMFLY-PT homology and algebraic geometry of the Hilbert scheme of points on the plane, a central object in modern algebraic geometry and geometric representation theory. In this collaborative project, the investigators plan to compare and unify different approaches to the study of this connection and to develop the fundamental understanding of the relation between the category of Soergel bimodules and the Hilbert scheme. They also plan to provide an algebro-geometric construction of HOMFLY-PT homology and to understand its relation to the combinatorics of Macdonald polynomials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
赫克代数及其推广是现代表征理论的中心对象。它们自然地出现在数论、表示论、代数几何,甚至低维拓扑中。利用Hecke代数的一种分类定义了结点和连杆的一种新的拓扑不变量,称为HOMFLY-PT同调。然而,从定义中计算这个不变量是极其困难的。该项目的重点是理解连接同调和分类Hecke代数的代数、几何和组合结构,目的是统一、深化和澄清这些概念之间的联系。最近的研究进展有力地表明了HOMFLY-PT同调与希尔伯特平面点格式的代数几何之间的联系,希尔伯特平面点格式是现代代数几何和几何表示理论的中心对象。在这个合作项目中,研究人员计划比较和统一研究这种联系的不同方法,并发展对Soergel双模范畴与希尔伯特方案之间关系的基本理解。他们还计划提供HOMFLY-PT同调的代数-几何构造,并了解其与麦克唐纳多项式组合的关系。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrei Negut其他文献

Andrei Negut的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrei Negut', 18)}}的其他基金

CAREER: Higher Enumerative Geometry via Representation Theory and Mathematical Physics
职业:通过表示论和数学物理进行高等枚举几何
  • 批准号:
    1845034
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Quantum Algebras, Quiver Varieties, and Applications
量子代数、箭袋种类和应用
  • 批准号:
    1600375
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了