Equivariance and Higher Algebra in Motivic Homotopy Theory

动机同伦理论中的等变性和高等代数

基本信息

  • 批准号:
    1761718
  • 负责人:
  • 金额:
    $ 5.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-07-25 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

Algebraic geometry is concerned with understanding solutions of polynomial equations. It has long been known that in general one cannot hope to find exact solutions to polynomial equations, even for a single equation in one variable. Nevertheless, it is often possible to answer more qualitative questions about the set of solutions. In particular, one of the most fundamental and notoriously difficult questions in algebraic geometry is whether solutions exist at all. Motivic homotopy theory is a relatively new approach to such questions, and it has already helped solve many open problems in the past twenty years. It borrows many ideas and techniques from a different field of mathematics, topology, and successfully applies them to algebraic geometry in unexpected ways. Following this trend, this project aims to bring several fruitful ideas from topology to the world of algebraic geometry.This project consists of two parts. In the first part, the PI will develop equivariant motivic homotopy theory from the point of view of parametrized homotopy theory. In the second part, the PI will study highly structured commutative algebras in motivic homotopy theory and hopes to address the problem of recognizing motivic loop spaces. More specifically, the PI will lay solid foundations for equivariant motivic homotopy theory by constructing Grothendieck's six-functor formalism for fiberwise homotopy theory over algebraic stacks. The mere existence of this formalism has interesting consequences for classical invariants of stacks, like algebraic K-theory; it can also be used to construct new well-behaved cohomological invariants of algebraic stacks, and to better understand the relations between them. In the second part of this project, the PI will introduce a motivic refinement of the notion of E_infinity ring and show that many classical cohomological invariants of algebraic varieties possess this refined multiplicative structure. The PI will also introduce the related notion of motivic E_infinity space and investigate their role in a potential recognition principle for infinite motivic loop spaces. To achieve these goals, the PI will use existing as well as new methods from equivariant algebraic geometry, ordinary motivic homotopy theory, classical algebraic topology, and higher category theory.
代数几何涉及对多项式方程的解的理解。人们早就知道,一般来说,人们不能指望找到多项式方程的精确解,即使是一个变量的单一方程。然而,通常可以回答关于解决方案集的更多定性问题。特别是,代数几何中最基本和最困难的问题之一是解是否存在。动机同伦理论是解决这类问题的一种相对较新的方法,在过去的二十年里,它已经帮助解决了许多悬而未决的问题。它从不同的数学领域——拓扑学——借鉴了许多思想和技术,并以意想不到的方式成功地将它们应用于代数几何。遵循这一趋势,本项目旨在将一些富有成效的思想从拓扑学带到代数几何的世界。本项目由两部分组成。在第一部分中,PI将从参数化同伦理论的角度发展等变动力同伦理论。在第二部分,PI将研究动机同伦理论中的高度结构化交换代数,并希望解决识别动机环空间的问题。更具体地说,PI将通过构建代数堆栈上光纤同伦理论的Grothendieck六函子形式,为等变动力同伦理论奠定坚实的基础。这种形式的存在对堆栈的经典不变量有有趣的结果,比如代数k理论;它也可以用来构造代数堆栈的新的性能良好的上同调不变量,并更好地理解它们之间的关系。在本项目的第二部分,PI将引入e_∞环概念的动机改进,并证明许多代数变异的经典上同不变量具有这种改进的乘法结构。本文还将介绍动机无穷空间的相关概念,并研究它们在无限动机循环空间的潜在识别原理中的作用。为了实现这些目标,PI将使用现有的以及来自等变代数几何、普通动机同伦理论、经典代数拓扑和高等范畴理论的新方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc Hoyois其他文献

Algebraic cobordism and a Conner-Floyd isomorphism for algebraic K-theory
代数协边和代数 K 理论的 Conner-Floyd 同构
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Toni Annala;Marc Hoyois;Ryomei Iwasa
  • 通讯作者:
    Ryomei Iwasa
Affine representability results in A^1-homotopy theory III: finite fields and complements
A^1-同伦理论 III 中的仿射表示性结果:有限域和补集
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Asok;Marc Hoyois;Matthias Wendt
  • 通讯作者:
    Matthias Wendt
Hermitian K-theory via oriented Gorenstein algebras
通过定向 Gorenstein 代数的埃尔米特 K 理论
A1 contractibility of the Koras–Russell threefold
Koras-Russell 三倍的 A1 可收缩性
  • DOI:
    10.14231/ag-2016-019
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marc Hoyois;Analendu Krishna;Paul Arne Østvaer
  • 通讯作者:
    Paul Arne Østvaer
The localization theorem for framed motivic spaces
  • DOI:
    10.1112/s0010437x20007575
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Marc Hoyois
  • 通讯作者:
    Marc Hoyois

Marc Hoyois的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc Hoyois', 18)}}的其他基金

Equivariance and Higher Algebra in Motivic Homotopy Theory
动机同伦理论中的等变性和高等代数
  • 批准号:
    1508096
  • 财政年份:
    2015
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

Higher Teichmüller理论中若干控制型问题的研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高桡度(Higher-Twist)算符和量子色动力学因子化
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目

相似海外基金

The higher algebra of spaces of quantum systems
量子系统空间的高等代数
  • 批准号:
    RGPIN-2021-02424
  • 财政年份:
    2022
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Discovery Grants Program - Individual
The higher algebra of spaces of quantum systems
量子系统空间的高等代数
  • 批准号:
    RGPAS-2021-00035
  • 财政年份:
    2022
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
The higher algebra of spaces of quantum systems
量子系统空间的高等代数
  • 批准号:
    RGPIN-2021-02424
  • 财政年份:
    2021
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Discovery Grants Program - Individual
The higher algebra of spaces of quantum systems
量子系统空间的高等代数
  • 批准号:
    RGPAS-2021-00035
  • 财政年份:
    2021
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
CAREER: Higher Algebra and Symplectic Geometry
职业:高等代数和辛几何
  • 批准号:
    2044557
  • 财政年份:
    2021
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Continuing Grant
The higher algebra of spaces of quantum systems
量子系统空间的高等代数
  • 批准号:
    DGECR-2021-00002
  • 财政年份:
    2021
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Discovery Launch Supplement
Subfactors, Tensor Categories, and Higher Dimensional Algebra
子因子、张量类别和高维代数
  • 批准号:
    2000093
  • 财政年份:
    2020
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Standard Grant
Higher Algebra and Quantum Protocols
高等代数和量子协议
  • 批准号:
    EP/S018646/2
  • 财政年份:
    2020
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Research Grant
Higher Algebra and Quantum Protocols
高等代数和量子协议
  • 批准号:
    EP/S018646/1
  • 财政年份:
    2019
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Research Grant
Higher Algebra and Quantum Protocols
高等代数和量子协议
  • 批准号:
    EP/S018883/1
  • 财政年份:
    2019
  • 资助金额:
    $ 5.6万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了