Collaborative Research: Single-Input Control of Large Microrobot Swarms using Serial Addressing for Microassembly and Biomedical Applications
协作研究:使用串行寻址对大型微型机器人群进行单输入控制,用于微装配和生物医学应用
基本信息
- 批准号:1762924
- 负责人:
- 金额:$ 36.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This collaborative research project will create a practical control scheme for large swarms of microrobots. These robots are typically no more than a few millimeters in length, and rely on an external power source and control signal. Currently, it is possible to steer the swarm as a whole to a single destination (or perhaps, to a desired average location). However, realizing the full potential benefits of microrobot swarms will require the ability to simultaneously send independent commands, either to individual robots or to small subgroups. Device designs have previously been explored that respond to different command amplitudes, however this approach quickly becomes impractical as the number of independently addressable robots grows. This scalability problem can be overcome using serial addressing schemes. Here, there are only a few distinct values for the control signal. Each independently addressable subset of robots is associated with a unique sequence of signal values, and will change its behavior only if the control signal contains that specific sequence. This project considers two fundamental issues that arise in implementing such a scheme. First is the need for on-board computation and memory allowing the robots to recognize the unique sequence and to change the robots state based on the detection of such sequence. Second is the need for a propulsive mechanism that couples to the robot state to allow differential guidance towards a target configuration. This project will advance two innovative engineering platforms that meet both needs. The first is electrostatically actuated, operates on a planar substrate, and is suitable for structured tasks such as microassembly. The second is magnetically actuated, operates in a liquid volume, and is suitable for biomedical applications such as drug delivery. The technical aspects of the project are complimented by outreach activities, including an annual microrobotics mobility competition to be held at the IEEE International Conference on Robotics and Automation -- a premier robotics conference for academia and industry. The results from this project will enhance the national health, by enabling new diagnostic and therapeutic uses for microrobot swarms. They will also promote the national prosperity, by enabling new classes of microassembly robots.This project aims to develop a practical control scheme to simultaneously control large numbers of microrobots. This will be achieved by using microelectromechanical systems (MEMS) to electromechanically and magnetically decode a sequence embedded in the single global control signal, and couple the reconfiguration of such sequence to the modification of the individual microrobot trajectories. This on-board sequence decoding will be accomplished through sets of on-board physics-based finite state machines (PFSM) that can accept a control sequence embedded in the control signal and change the behavior of the microrobots accordingly. The project will use both electrostatic and magnetic approaches to implement PFSMs, and to couple their "accept" state to the propulsion mechanism to modulate individual trajectories. Sets of stress-engineered electrostatic switches, which will latch in response to a pre-programmed control voltage sequence, will be used to implement PFSM on the electrostatic platform. Electro-permanent magnetic circuits, which change their magnetic moment in response to a sequence of global magnetic field, will be used to implement PFSM on the magnetic platform. The project will develop the theory for PFSM-based multi-microrobot control, construct both electrostatic and magnetic microrobotic PFSM platforms, and validate the concept by implementing the PFSM-based control on swarms of electrostatically and magnetically powered microrobots. The developed theory and approach will pave way for control of large microrobot swarms for numerous biomedical and microassembly applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个合作研究项目将为大型微型机器人群创造一个实用的控制方案。这些机器人通常长度不超过几毫米,依靠外部电源和控制信号。目前,有可能将蜂群作为一个整体引导到一个目的地(或者可能是一个期望的平均位置)。然而,要实现微型机器人群的全部潜在好处,就需要能够同时向单个机器人或小群机器人发送独立命令。先前已经探索了响应不同指令幅度的设备设计,但是随着可独立寻址的机器人数量的增加,这种方法很快变得不切实际。这种可伸缩性问题可以通过使用串行寻址方案来克服。这里,控制信号只有几个不同的值。每个可独立寻址的机器人子集都与一个唯一的信号值序列相关联,并且只有当控制信号包含该特定序列时才会改变其行为。本项目考虑了在实施这种方案时出现的两个基本问题。首先是需要机载计算和内存,允许机器人识别唯一的序列,并根据检测到的序列改变机器人的状态。其次是需要一个与机器人状态耦合的推进机构,以允许向目标构型进行微分制导。该项目将推进满足这两种需求的两个创新工程平台。第一种是静电驱动的,在平面基板上操作,适用于微组装等结构化任务。第二种是磁驱动的,在液体体积中操作,适用于生物医学应用,如药物输送。该项目的技术方面得到了外展活动的赞扬,包括将在IEEE机器人与自动化国际会议上举行的年度微型机器人移动竞赛,这是学术界和工业界的首要机器人会议。该项目的成果将通过为微型机器人群提供新的诊断和治疗用途,提高国民健康水平。他们还将促进国家的繁荣,使新型微型装配机器人成为可能。本项目旨在开发一种实用的控制方案,以同时控制大量微型机器人。这将通过使用微机电系统(MEMS)对嵌入在单个全局控制信号中的序列进行机电和磁解码来实现,并将该序列的重新配置与单个微型机器人轨迹的修改相结合。这种车载序列解码将通过一组基于车载物理的有限状态机(PFSM)来完成,这些有限状态机可以接受嵌入在控制信号中的控制序列,并相应地改变微型机器人的行为。该项目将使用静电和磁性方法来实现pfsm,并将其“接受”状态与推进机制相耦合,以调节单个轨迹。一组应力工程静电开关将根据预编程的控制电压序列锁存,将用于在静电平台上实现PFSM。电磁永磁路的磁矩随磁场序列的变化而变化,将被用来实现磁平台上的PFSM。该项目将发展基于PFSM的多微机器人控制理论,构建静电和磁性微机器人PFSM平台,并通过在一群静电和磁力驱动的微机器人上实现基于PFSM的控制来验证这一概念。所开发的理论和方法将为大量生物医学和微装配应用的大型微型机器人群的控制铺平道路。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Structured Distance to the Nearest System Without Property P
没有属性 P 的到最近系统的结构化距离
- DOI:10.1109/tac.2018.2817163
- 发表时间:2018
- 期刊:
- 影响因子:6.8
- 作者:Johnson, Scott C.;Wicks, Mark;Zefran, Milos;DeCarlo, Raymond A.
- 通讯作者:DeCarlo, Raymond A.
Role Switching in Task-Oriented Multimodal Human-Robot Collaboration
面向任务的多模式人机协作中的角色切换
- DOI:10.1109/ro-man47096.2020.9223461
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Monaikul, N.;Abbasi, B.;Risbek, Z.;Di Eugenio, B.;Zefran, M.
- 通讯作者:Zefran, M.
Group-based control of large-scale micro-robot swarms with on-board Physical Finite-State Machines
具有机载物理有限状态机的大规模微型机器人群的基于群体的控制
- DOI:10.1109/case49997.2022.9926706
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Li, Siyu;Zefran, Milos;Paprotny, Igor
- 通讯作者:Paprotny, Igor
Physical Action Primitives for Collaborative Decision Making in Human-Human Manipulation
人机协作决策的物理动作原语
- DOI:10.1109/ro-man50785.2021.9515363
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Rysbek, Zhanibek;Oh, Ki Hwan;Abbasi, Bahareh;Zefran, Milos;Di Eugenio, Barbara
- 通讯作者:Di Eugenio, Barbara
A Multimodal Human-Robot Interaction Manager for Assistive Robots
用于辅助机器人的多模式人机交互管理器
- DOI:10.1109/iros40897.2019.8968505
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Abbasi, Bahareh;Monaikul, Natawut;Rysbek, Zhanibek;Eugenio, Barbara Di;Zefran, Milos
- 通讯作者:Zefran, Milos
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Igor Paprotny其他文献
Slow-Light Enhanced CO$_{2}$ Sensing Using 3-D Photonic Crystals Fabricated Using Two-Photon Polymerization
使用双光子聚合制造的 3D 光子晶体进行慢光增强 CO$_{2}$ 传感
- DOI:
10.1109/lsens.2023.3315253 - 发表时间:
2023 - 期刊:
- 影响因子:2.8
- 作者:
Anuj Singhal;Anandvinod Dalmiya;Patrick T. Lynch;Igor Paprotny - 通讯作者:
Igor Paprotny
DESIGN AND FABRICATION OF MEMS ELECTROSTATIC ENERGY HARVESTER WITH NONLINEAR SPRINGS AND VERTICAL SIDEWALL ELECTRETS
非线性弹簧和垂直侧壁驻极体MEMS静电能量收集器的设计与制造
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
S. Nguyen;Ngoc;Einar Halvorsen;Igor Paprotny - 通讯作者:
Igor Paprotny
Group-Control Motion Planning Framework for Microrobot Swarms in a Global Field
全球范围内微型机器人群的群控运动规划框架
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
S. Li;Afagh Mehri Shervedani;Milovs vZefran;Igor Paprotny - 通讯作者:
Igor Paprotny
Functionalized multi-walled carbon nanotube based sensors for distributed methane leak detection
用于分布式甲烷泄漏检测的功能化多壁碳纳米管传感器
- DOI:
10.1109/icsens.2015.7370207 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Humayun;R. Divan;L. Stan;D. Rosenmann;D. Gosztola;Lara Gundel;Paul A. Solomon;Igor Paprotny - 通讯作者:
Igor Paprotny
Igor Paprotny的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Igor Paprotny', 18)}}的其他基金
EAGER: Opto-Radiometric Powered Untethered MEMS Microfliers
EAGER:光辐射供电的无线 MEMS Microfliers
- 批准号:
1620282 - 财政年份:2016
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
- 批准号:
2411394 - 财政年份:2024
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Collaborative Research: CCSS: Continuous Facial Sensing and 3D Reconstruction via Single-ear Wearable Biosensors
合作研究:CCSS:通过单耳可穿戴生物传感器进行连续面部传感和 3D 重建
- 批准号:
2401415 - 财政年份:2023
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Collaborative Research: Cooperative Processes at Surfaces: Ligand Binding at the Single Molecule Level
合作研究:表面合作过程:单分子水平的配体结合
- 批准号:
2306317 - 财政年份:2023
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant
Collaborative Research: Biomechanical mechanisms conferring wound resilience in single-celled organisms
合作研究:赋予单细胞生物伤口复原力的生物力学机制
- 批准号:
2317442 - 财政年份:2023
- 资助金额:
$ 36.68万 - 项目类别:
Standard Grant