Temperature Dependence and Dynamics of Cold Few-Atom Systems

冷少原子系统的温度依赖性和动力学

基本信息

  • 批准号:
    1762949
  • 负责人:
  • 金额:
    $ 0.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-08-16 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Achieving the control of matter at the quantum level requires the detailed understanding of many-body systems at the quantum level. This project is expected to enhance the understanding of quantum mechanical processes of fundamental importance, in particular the thermodynamical properties of ultracold few-body systems of fermionic atoms. Ultimately, understanding quantum mechanical phenomena from a bottom-up perspective will have important technological implications for a wide range of every-day tasks ranging from improved cell phone technology to improved surgical tools. Today's world is technology driven and requires a highly skilled workforce. This project will train the next generation of young scientists. Undergraduate and graduate students will be involved in all aspects of the project, and the analytical and computational skills that the students gain will prepare them well for future pursuits in industry and academia. This project will advance science by developing numerical and analytical tools that allow for the study of the temperature dependence and dynamics of quantum mechanical few-body systems. Few-body physics has played an important role in the development of quantum mechanics from the very beginning. For example, the helium atom, one of the simplest atoms of the periodic table and an effective three-body system, has been instrumental in developing a concise understanding of electron-electron correlations as well as fragmentation and (auto-) ionization. The experimental realization of ultracold fermionic gases consisting of a small number of particles (two, three, four, etc.) provides a new theoretically accessible model system with which to study quantum mechanical few-body phenomena at zero and finite temperature. Moreover, time-dependent measurements can be compared directly with theoretical predictions. This project aims to conduct theoretical studies of cold few-atom systems. Finite-temperature calculations for trapped few-atom systems will be performed using an efficient and flexible path-integral Monte Carlo code developed by the investigator, which has been shown to yield reliable results for small bosonic and fermionic systems over a wide range of temperatures. The path-integral Monte Carlo code will be made available to the broader scientific community as part of the Venture Fund for Software Reuse program. Time-dependent studies will be performed using an efficient and highly accurate grid-based time propagation scheme that expands the time evolution operator in terms of Chebychev polynomials.
要在量子水平上实现对物质的控制,需要在量子水平上对多体系统有详细的了解。该项目有望提高对量子力学过程的理解,特别是对费米子原子的超冷少体系统的物理性质的理解。最终,从自下而上的角度理解量子力学现象将对从改进的手机技术到改进的手术工具等广泛的日常任务产生重要的技术影响。当今世界是技术驱动的,需要高技能的劳动力。该项目将培养下一代年轻科学家。本科生和研究生将参与该项目的各个方面,学生获得的分析和计算技能将为他们未来在工业和学术界的追求做好准备。该项目将通过开发数值和分析工具来推进科学,这些工具允许研究量子力学少体系统的温度依赖性和动力学。少体物理从一开始就在量子力学的发展中扮演着重要的角色。例如,氦原子是元素周期表中最简单的原子之一,也是一个有效的三体系统,它有助于人们对电子-电子相关性以及碎裂和(自)电离的简明理解。实验实现了由少量粒子(两个、三个、四个等)组成的超冷费米子气体。提供了一个新的理论上可达到的模型系统,用于研究零温和有限温下的量子力学少体现象。此外,与时间相关的测量可以直接与理论预测进行比较。该项目旨在对冷少原子系统进行理论研究。将使用研究人员开发的有效和灵活的路径积分Monte Carlo代码对捕获的少数原子系统进行温度计算,该代码已被证明在很宽的温度范围内对小玻色子和费米子系统产生可靠的结果。路径积分蒙特卡罗代码将提供给更广泛的科学界作为风险基金软件重用计划的一部分。时间依赖性研究将使用一个高效和高精度的基于网格的时间传播方案进行,该方案扩展了切比雪夫多项式的时间演化算子。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Doerte Blume其他文献

Coupled-channel pseudopotential description of the Feshbach resonance in two dimensions
二维 Feshbach 共振的耦合通道赝势描述
  • DOI:
    10.1103/physreva.73.060701
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    K. Kanjilal;Doerte Blume
  • 通讯作者:
    Doerte Blume
Trapped polarized Fermi gas at unitarity
单一性下被俘获的极化费米气体
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Doerte Blume
  • 通讯作者:
    Doerte Blume
Degeneracies in trapped two-component Fermi gases.
被捕获的双组分费米气体的简并性。
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    K. Daily;D. Rakshit;Doerte Blume
  • 通讯作者:
    Doerte Blume
Dilute Bose gases interacting via power-law potentials
稀释玻色气体通过幂律势相互作用
  • DOI:
    10.1103/physreva.77.032703
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. Kalas;Doerte Blume
  • 通讯作者:
    Doerte Blume
Engineering dynamical phase diagrams with driven lattices in spinor gases
旋量气体中驱动晶格的工程动力学相图
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    J. O. Austin;Z. N. Hardesty;Qingze Guan;C. Binegar;Doerte Blume;R. J. Lewis;Yingmei Liu
  • 通讯作者:
    Yingmei Liu

Doerte Blume的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Doerte Blume', 18)}}的其他基金

Dynamics of Matter and Light-Matter Systems
物质和光物质系统动力学
  • 批准号:
    2110158
  • 财政年份:
    2021
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Standard Grant
Travel Support for Students to Attend 2019 DAMOP Conference, May 27-31, 2019 in Milwaukee, WI.
为参加 2019 年 5 月 27 日至 31 日在威斯康星州密尔沃基举行的 2019 年 DAMOP 会议的学生提供差旅支持。
  • 批准号:
    1902451
  • 财政年份:
    2019
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Standard Grant
Spin and Spatial Correlations of Few-Body Systems
少体系统的自旋和空间相关性
  • 批准号:
    1806259
  • 财政年份:
    2018
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Continuing Grant
Few-Body Physics with Ultra Cold Atoms
超冷原子的少体物理
  • 批准号:
    1745142
  • 财政年份:
    2017
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Continuing Grant
Few-Body Physics with Ultra Cold Atoms
超冷原子的少体物理
  • 批准号:
    1509892
  • 财政年份:
    2015
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Continuing Grant
Temperature Dependence and Dynamics of Cold Few-Atom Systems
冷少原子系统的温度依赖性和动力学
  • 批准号:
    1415112
  • 财政年份:
    2014
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Continuing Grant
Universal and Non-Universal Few-Body Physics in the Ultracold
超冷中的普遍和非普遍少体物理学
  • 批准号:
    1205443
  • 财政年份:
    2012
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Continuing Grant
Microscopic Description of Strongly Correlated Bose and Fermi Gases
强相关玻色和费米气体的微观描述
  • 批准号:
    0855332
  • 财政年份:
    2009
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Continuing Grant
Monte Carlo Treatment of Bose and Fermi Gases
玻色和费米气体的蒙特卡罗处理
  • 批准号:
    0555316
  • 财政年份:
    2006
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Continuing grant
Monte Carlo Treatment of Atomic Gases - Low-Dimensionality and Impurities
原子气体的蒙特卡罗处理 - 低维和杂质
  • 批准号:
    0331529
  • 财政年份:
    2003
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Continuing grant

相似国自然基金

基于时间序列间分位相依性(quantile dependence)的风险值(Value-at-Risk)预测模型研究
  • 批准号:
    71903144
  • 批准年份:
    2019
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SG: Density dependence and disease dynamics: moving towards a predictive framework
SG:密度依赖性和疾病动态:迈向预测框架
  • 批准号:
    2211287
  • 财政年份:
    2022
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Standard Grant
Circuitry dynamics underlying opioid-dependence: Integrating structural, functional, and transcriptomic mechanisms
阿片类药物依赖性的电路动力学:整合结构、功能和转录组机制
  • 批准号:
    10509750
  • 财政年份:
    2022
  • 资助金额:
    $ 0.88万
  • 项目类别:
Circuitry dynamics underlying opioid-dependence: Integrating structural, functional, and transcriptomic mechanisms
阿片类药物依赖性的电路动力学:整合结构、功能和转录组机制
  • 批准号:
    10838996
  • 财政年份:
    2022
  • 资助金额:
    $ 0.88万
  • 项目类别:
Temperature Dependence of Hydride Kinetic Isotope Effects in Solution to Test the Proposed Role of Protein Dynamics in Enzyme Catalysis
溶液中氢化物动力学同位素效应的温度依赖性,以测试蛋白质动力学在酶催化中的拟议作用
  • 批准号:
    10580264
  • 财政年份:
    2022
  • 资助金额:
    $ 0.88万
  • 项目类别:
Investigation of Surface Roughness Dependence on Rarefied Aerodynamics based on Hypersonic Rarefied Wind Tunnel Measurement and Molecular Dynamics Simulations
基于高超声速稀薄风洞测量和分子动力学模拟的表面粗糙度对稀薄空气动力学的依赖性研究
  • 批准号:
    21K04487
  • 财政年份:
    2021
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Drug targeting the dynamics of opioid systems in alcohol dependence
针对酒精依赖中阿片类药物系统动态的药物
  • 批准号:
    10443881
  • 财政年份:
    2020
  • 资助金额:
    $ 0.88万
  • 项目类别:
Drug targeting the dynamics of opioid systems in alcohol dependence
针对酒精依赖中阿片类药物系统动态的药物
  • 批准号:
    10032660
  • 财政年份:
    2020
  • 资助金额:
    $ 0.88万
  • 项目类别:
Study of Wavelength Dependence of Plasma Collision Dynamics and Ionization Mechanism in Laser Solid Matter Interactions
激光固体相互作用中等离子体碰撞动力学和电离机制的波长依赖性研究
  • 批准号:
    2010365
  • 财政年份:
    2020
  • 资助金额:
    $ 0.88万
  • 项目类别:
    Standard Grant
Drug targeting the dynamics of opioid systems in alcohol dependence
针对酒精依赖中阿片类药物系统动态的药物
  • 批准号:
    10662302
  • 财政年份:
    2020
  • 资助金额:
    $ 0.88万
  • 项目类别:
Drug targeting the dynamics of opioid systems in alcohol dependence
针对酒精依赖中阿片类药物系统动态的药物
  • 批准号:
    10266772
  • 财政年份:
    2020
  • 资助金额:
    $ 0.88万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了