Geometric Properties of Second Order Elliptic Partial Differential Equations

二阶椭圆偏微分方程的几何性质

基本信息

  • 批准号:
    1763179
  • 负责人:
  • 金额:
    $ 20.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-05-01 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

Many physical processes, for example the way heat spreads from a lit candle or a radiator throughout the room or the way two waves in a pond interact with each other, are rather well understood and we have several equations that describe the processes. There are usually three main questions that are being asked: (1) Is the equation correctly describing nature? (2) Does the equation actually have a solution? (3) Can the solution be computed, either by hand or on a computer? The purpose of this project is to investigate a question that is not asked quite as often: (4) what does the solution actually look like? If we are heating a room with, say, four candles and a radiator, which spot is going to be the coldest? These simple questions lead to both interesting and beautiful mathematics as well as surprising applications in practice (the Google Search Algorithm is essentially based on these types of structures, "cold" webpages are lower ranked than "hot" webpages).This project is dedicated to the study of (uniformly) elliptic second order partial differential equations, the main focus being on geometric properties of the solution and how those interact with the geometry of the underlying domain. Three explicit problems that will be studied are the (1) the location of extrema and critical points, (2) the geometry of level sets and (3) the geometry of eigenfunctions of an elliptic operator. The main types of applications will be (4) the analysis of spectral methods on graphs and (5) localization phenomena in mathematical physics. The main tools will be basic facts from geometry analysis to reinterpret analytic estimates geometrically and vice versa, the interpretation of elliptic equations as fixed points in time of an associated parabolic equation (as well as associated techniques from parabolic equations) and various aspects of spectral theory. Tools from the discrete world may be useful when reducing estimates to toy models in the graph setting.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多物理过程,例如热从点燃的蜡烛或散热器在整个房间中传播的方式,或者池塘中的两个波浪相互作用的方式,都是相当好理解的,我们有几个方程来描述这些过程。通常有三个主要问题被问到:(1)方程是否正确地描述了自然?(2)这个方程真的有解吗?(3)这个解能用手或计算机算出吗?这个项目的目的是调查一个不经常被问到的问题:(4)解决方案实际上是什么样子的?如果我们用四支蜡烛和一个散热器来加热一个房间,哪个地方最冷?这些简单的问题导致既有趣和美丽的数学以及令人惊讶的应用在实践中(Google搜索算法基本上是基于这些类型的结构,“冷”网页的排名低于“热”网页)。该项目致力于研究(一致)椭圆二阶偏微分方程主要关注的是解决方案的几何属性以及这些属性如何与基础域的几何形状相互作用。将研究的三个明确的问题是(1)极值和临界点的位置,(2)水平集的几何和(3)椭圆算子的本征函数的几何。应用的主要类型将是(4)图的谱方法的分析和(5)数学物理中的局部化现象。主要工具将是从几何分析的基本事实,以几何方式重新解释解析估计,反之亦然,将椭圆方程解释为相关抛物方程的时间不动点(以及抛物方程的相关技术)和谱理论的各个方面。当在图形设置中将估算简化为玩具模型时,离散世界中的工具可能会很有用。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(18)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Zeroes of Random Polynomials and an Application to Unwinding
Approximating pointwise products of Laplacian eigenfunctions
  • DOI:
    10.1016/j.jfa.2019.05.025
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Jianfeng Lu;C. Sogge;S. Steinerberger
  • 通讯作者:
    Jianfeng Lu;C. Sogge;S. Steinerberger
A Remark on the Arcsine Distribution and the Hilbert transform
关于反正弦分布和希尔伯特变换的评论
Recovering Trees with Convex Clustering
A COMPACTNESS PRINCIPLE FOR MAXIMISING SMOOTH FUNCTIONS OVER TOROIDAL GEODESICS
环形测地线上光滑函数最大化的紧致性原理
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stefan Steinerberger其他文献

A remark on the numerical integration of harmonic functions in the plane
  • DOI:
    10.1016/j.jco.2014.06.002
  • 发表时间:
    2015-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stefan Steinerberger
  • 通讯作者:
    Stefan Steinerberger
On the optimal interpoint distance sum inequality
  • DOI:
    10.1007/s00013-011-0293-7
  • 发表时间:
    2011-08-30
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Stefan Steinerberger
  • 通讯作者:
    Stefan Steinerberger
Well-Distributed Great Circles on $$\mathbb {S}^2$$
  • DOI:
    10.1007/s00454-018-9994-z
  • 发表时间:
    2018-04-11
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Stefan Steinerberger
  • 通讯作者:
    Stefan Steinerberger
Dirichlet eigenfunctions with nonzero mean value
具有非零平均值的狄利克雷特征函数
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stefan Steinerberger;Raghavendra Venkatraman
  • 通讯作者:
    Raghavendra Venkatraman
On Sublevel Set Estimates and the Laplacian
  • DOI:
    10.1007/s11118-020-09847-3
  • 发表时间:
    2020-05-06
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Stefan Steinerberger
  • 通讯作者:
    Stefan Steinerberger

Stefan Steinerberger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stefan Steinerberger', 18)}}的其他基金

Geometric Properties of Second Order Elliptic Partial Differential Equations
二阶椭圆偏微分方程的几何性质
  • 批准号:
    2123224
  • 财政年份:
    2021
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant

相似海外基金

Geometric Properties of Second Order Elliptic Partial Differential Equations
二阶椭圆偏微分方程的几何性质
  • 批准号:
    2123224
  • 财政年份:
    2021
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
Second-Order Variational Properties of Composite Optimization and Applications
复合材料优化的二阶变分性质及其应用
  • 批准号:
    2108546
  • 财政年份:
    2021
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Standard Grant
In situ studies of particle properties during their formation and growth with optical second-harmonic generation
通过光学二次谐波产生对粒子形成和生长过程中的特性进行原位研究
  • 批准号:
    260796254
  • 财政年份:
    2014
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Research Grants
A study on the effects of the second-language learners' lexical properties on speech perception and production
第二语言学习者词汇特性对言语感知和产出的影响研究
  • 批准号:
    26370508
  • 财政年份:
    2014
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Second harmonic generation from plasmonic nanostructures: Modelling nonlinear optical properties for chirality sensing.
等离子体纳米结构的二次谐波产生:模拟手性传感的非线性光学特性。
  • 批准号:
    453813-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Engage Grants Program
Evaluation of deformation and fluidization properties of liquefied soils - Development to the second stage liquefaction research
液化土变形与流化特性评价——向第二阶段液化研究进展
  • 批准号:
    23246086
  • 财政年份:
    2011
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Synthesis of new bent core mesogens, optimized for large non-linear optical effects and investigation of their physical properties with respect to phase behaviour and efficiency of second harmonic generation
新型弯曲核心介晶的合成,针对大非线性光学效应进行了优化,并研究了其在相位行为和二次谐波产生效率方面的物理特性
  • 批准号:
    174570555
  • 财政年份:
    2010
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Research Fellowships
High (p,T) properties of wide band-gap semiconductors from second harmonic generation measurements
通过二次谐波产生测量宽带隙半导体的高 (p,T) 特性
  • 批准号:
    141681817
  • 财政年份:
    2009
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Priority Programmes
CAUTERIZATION OF DIELECTRIC PROPERTIES FOR MONOLAYERATAIR-WATER INTERFACE BY MEANS OF MAXWELL DISPLACEMENT CURRENT AND OPTICAL SECOND HARMONIC GENERATION MEASURMENT
麦克斯韦位移电流和光学二次谐波产生测量单层空气-水界面介电性能
  • 批准号:
    12450122
  • 财政年份:
    2000
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Qualitative Properties of Solutions to Second Order Elliptic and Parabolic Differential Equations
二阶椭圆和抛物型微分方程解的定性性质
  • 批准号:
    9971052
  • 财政年份:
    1999
  • 资助金额:
    $ 20.77万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了