III: Medium: Collaborative Research: Guiding Exploration of Protein Structure Spaces with Deep Learning
III:媒介:协作研究:用深度学习指导蛋白质结构空间探索
基本信息
- 批准号:1763246
- 负责人:
- 金额:$ 44.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Decades of scientific enquiry beyond molecular biology have demonstrated just how fundamental form is to function. All chemical reactions in the living cell involve molecules bumping and sticking to one another, and molecular form or structure is a central determinant of complementarity and strength of molecular interactions. In particular, by assuming specific structures, proteins are able to regulate diverse processes that maintain and replicate the living cell. With structure determination in laboratories lagging desperately behind the rapidly-growing number of protein-encoding gene sequences by high-throughput sequencing technologies, computational approaches to the problem of protein structure prediction now have a central role in molecular biology. This project advances algorithmic research to address the current impasse in form-function related problems in molecular biology. In particular, the project develops advanced optimization methods to explore the vast protein structure space and leverages information-integration techniques under the deep learning framework to effectively guide the exploration towards biologically-active structures. This project will benefit researchers of diverse sub-communities in computational and biological sciences, result in open source, publicly-available software packages, and provide excellent training and mentoring opportunities for under-represented students at the interface of computational science and computational biology.This project advances algorithmic research in information integration and informatics to address the current impasse in structure-function related problems in computational structural biology. The main focus is on the de-novo protein structure prediction problem, which is central to inferring biological activities of a rapidly-growing number of protein-encoding gene sequences. The proposed research generalizes the problem of exploring and obtaining a comprehensive view of a protein's structure space as that of computing a diverse ensemble of constraint-satisfying structures and then leveraging information-integration techniques to guide the exploration to regions of the structure space relevant for biological activity. The research proposes hybrid stochastic optimization algorithms for comprehensive exploration of protein structure spaces, deep convolutional neural networks for better assessment of structure nativeness, and combines the two in an information-integration algorithmic framework to guide the exploration of a structure space towards native structures. By doing so, the proposed research investigates a direction complementary to physics-based treatments, proposing to supplant such treatments with machine-learned models of nativeness. The research will benefit researchers in machine learning, stochastic optimization, and information integration with application-driven interests in molecular modeling, protein structure prediction, and modeling of complex, dynamic systems. The research will be disseminated via various venues, including an open-source software package, and will provide training opportunities for under-represented students of all levels at the interface of optimization, deep learning, and computational biology.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
除了分子生物学之外,几十年的科学探索已经证明了形式是如何发挥作用的基本形式。活细胞中的所有化学反应都涉及分子之间的碰撞和粘连,而分子的形状或结构是分子相互作用的互补性和强度的核心决定因素。特别是,通过假设特定的结构,蛋白质能够调节维持和复制活细胞的不同过程。随着实验室中的结构确定远远落后于高通量测序技术快速增长的编码蛋白质的基因序列,蛋白质结构预测问题的计算方法现在在分子生物学中发挥着核心作用。这个项目推进了算法研究,以解决目前分子生物学中与形式功能相关的问题的僵局。特别是,该项目开发了先进的优化方法来探索广阔的蛋白质结构空间,并利用深度学习框架下的信息集成技术来有效地指导对生物活性结构的探索。该项目将造福于计算和生物科学领域不同子社区的研究人员,产生开源、公开可用的软件包,并在计算科学和计算生物学的界面上为未被充分代表的学生提供极好的培训和指导机会。该项目推进了信息集成和信息学中的算法研究,以解决目前计算结构生物学中与结构功能相关的问题的僵局。主要的焦点是去新生蛋白质结构预测问题,这是推断快速增长的蛋白质编码基因序列的生物学活性的核心问题。这项拟议的研究将探索和获得蛋白质结构空间的综合视图的问题概括为计算满足约束条件的各种结构集成,然后利用信息集成技术来指导对结构空间中与生物活动相关的区域的探索。该研究提出了用于蛋白质结构空间综合探索的混合随机优化算法和用于更好地评估结构原生性的深度卷积神经网络,并将两者结合在一个信息集成算法框架中,以指导结构空间向自然结构的探索。通过这样做,这项拟议的研究探索了一个与基于物理学的治疗相补充的方向,建议用机器学习的原生性模型取代这种治疗。这项研究将有利于机器学习、随机优化和信息集成的研究人员,并以应用驱动的兴趣在分子建模、蛋白质结构预测和复杂、动态系统的建模方面发挥作用。这项研究将通过包括开放源码软件包在内的各种场所进行传播,并将为所有级别的代表不足的学生提供优化、深度学习和计算生物学方面的培训机会。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DRLComplex: Reconstruction of protein quaternary structures using deep reinforcement learning
- DOI:10.48550/arxiv.2205.13594
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Elham Soltanikazemi;Rajashree Roy;Farhan Quadir;Nabin Giri;Alex Morehead;Jianlin Cheng
- 通讯作者:Elham Soltanikazemi;Rajashree Roy;Farhan Quadir;Nabin Giri;Alex Morehead;Jianlin Cheng
Estimation of model accuracy in CASP13
- DOI:10.1002/prot.25767
- 发表时间:2019-07-16
- 期刊:
- 影响因子:2.9
- 作者:Chene, Jianlin;Choe, Myong-Ho;Wallner, Bjorn
- 通讯作者:Wallner, Bjorn
Deep learning for reconstructing protein structures from cryo-EM density maps: Recent advances and future directions
- DOI:10.1016/j.sbi.2023.102536
- 发表时间:2023-02-09
- 期刊:
- 影响因子:6.8
- 作者:Giri, Nabin;Roy, Raj S.;Cheng, Jianlin
- 通讯作者:Cheng, Jianlin
DProQ: A Gated-Graph Transformer for Protein Complex Structure Assessment
DProQ:用于蛋白质复杂结构评估的门控图转换器
- DOI:10.1101/2022.05.19.492741
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chen, Xiao;Morehead, Alex;Liu, Jian;Cheng, Jianlin
- 通讯作者:Cheng, Jianlin
Deep Learning to Predict Protein Backbone Structure from High-Resolution Cryo-EM Density Maps
- DOI:10.1038/s41598-020-60598-y
- 发表时间:2020-03-09
- 期刊:
- 影响因子:4.6
- 作者:Si, Dong;Moritz, Spencer A.;Cheng, Jianlin
- 通讯作者:Cheng, Jianlin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianlin Cheng其他文献
A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.
- DOI:
10.1109/tcbb.2014.2343960 - 发表时间:
2015-01 - 期刊:
- 影响因子:0
- 作者:
Spencer M;Eickholt J;Jianlin Cheng - 通讯作者:
Jianlin Cheng
Curation of the Deep Green list of unannotated green lineage proteins to enable structural and functional characterization
整理未注释的绿色谱系蛋白的 Deep Green 列表,以实现结构和功能表征
- DOI:
10.1101/2022.09.30.510186 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
E. Knoshaug;Peipei Sun;A. Nag;Huong Nguyen;Erin M. Mattoon;Ningning Zhang;Jian Liu;Chen Chen;Jianlin Cheng;Ru Zhang;Peter C. St. John;J. Umen - 通讯作者:
J. Umen
Predicting interchain contacts for homodimeric and homomultimeric protein complexes using multiple sequence alignments of monomers and deep learning
使用单体的多重序列比对和深度学习预测同二聚体和同多聚体蛋白质复合物的链间接触
- DOI:
10.1101/2020.11.09.373878 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Farhan Quadir;Rajashree Roy;Randal Halfmann;Jianlin Cheng - 通讯作者:
Jianlin Cheng
Machine Learning Algorithms for Protein Structure Prediction
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Jianlin Cheng - 通讯作者:
Jianlin Cheng
Protein Structure Refinement by Iterative Fragment Exchange
通过迭代片段交换优化蛋白质结构
- DOI:
10.1145/2506583.2506601 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Debswapna Bhattacharya;Jianlin Cheng - 通讯作者:
Jianlin Cheng
Jianlin Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianlin Cheng', 18)}}的其他基金
Deep transformers for integrating protein sequence, structure and interaction data to predict function
用于整合蛋白质序列、结构和相互作用数据以预测功能的深度转换器
- 批准号:
2308699 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Continuing Grant
ABI Innovation: Deep learning methods for protein bioinformatics
ABI Innovation:蛋白质生物信息学的深度学习方法
- 批准号:
1759934 - 财政年份:2018
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
CAREER: Analysis, Construction and Visualization of 3D Genome Structures
职业:3D 基因组结构的分析、构建和可视化
- 批准号:
1149224 - 财政年份:2012
- 资助金额:
$ 44.8万 - 项目类别:
Continuing Grant
相似海外基金
III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
- 批准号:
2420691 - 财政年份:2024
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
- 批准号:
2312865 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312932 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
- 批准号:
2348169 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
- 批准号:
2347592 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
- 批准号:
2312862 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
- 批准号:
2312930 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
- 批准号:
2312501 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant
Collaborative Research: IIS: III: MEDIUM: Learning Protein-ish: Foundational Insight on Protein Language Models for Better Understanding, Democratized Access, and Discovery
协作研究:IIS:III:中等:学习蛋白质:对蛋白质语言模型的基础洞察,以更好地理解、民主化访问和发现
- 批准号:
2310113 - 财政年份:2023
- 资助金额:
$ 44.8万 - 项目类别:
Standard Grant