III: Medium: Collaborative Research: KMELIN: Knowledge Mining and Embedding Learning for Complex Dynamic Information Networks

III:媒介:协作研究:KMELIN:复杂动态信息网络的知识挖掘和嵌入学习

基本信息

  • 批准号:
    1763620
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-06-01 至 2024-05-31
  • 项目状态:
    已结题

项目摘要

Complex dynamic information networks (CDINs) consist of data objects that are highly correlated with a variety of dependency relationships, such as patient-physician interactions or patient-medication-insurance claims. Each data object as a CDIN node has rich contents, such as biometric information of a patient, disease symptoms, or hospital logistics. Data objects and their relationships also continuously evolve and change. Many health, social, physical, and biological systems share the CDIN essence that the multifaceted and dynamic nature of individual nodes imposes significant challenges for modeling a complex and evolving network as a whole. Although data relationships are becoming rich and comprehensive than ever, existing systems are mostly relational-database driven, and cannot integrate complex relationships of networked data for Big Data analytics.This project aims to design a knowledge mining and embedding learning platform for CDINs that will (1) extract and represent complex structure and rich-content information in the health domain as a CDIN; (2) perform knowledge mining, including clustering and classification, on CDIN networks; (3) enable feature embedding learning with CDINs, so the users can interact with CDINs for content access, and (4) provide a prototype system for hospital re-admission decision support. The spectrum of the methods from the project will not only enrich algorithms and solutions for mining complex structure and rich content networks, as opposed to static networks, but also shift existing health information systems from traditional databases towards becoming network centered systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
复杂动态信息网络(CDINs)由与各种依赖关系高度相关的数据对象组成,例如患者-医生交互或患者-药物-保险索赔。作为CDIN节点的每个数据对象都具有丰富的内容,例如患者的生物特征信息、疾病症状或医院后勤。数据对象及其关系也在不断发展和变化。许多健康、社会、物理和生物系统都共享CDIN的本质,即单个节点的多面性和动态性对整个复杂和不断发展的网络建模提出了重大挑战。虽然数据关系比以往任何时候都更加丰富和全面,但现有系统大多是关系数据库驱动的,无法整合复杂的网络数据关系进行大数据分析。本项目旨在为CDIN设计一个知识挖掘和嵌入学习平台,该平台将(1)提取和表示健康领域中结构复杂、内容丰富的CDIN信息;(2)在CDIN网络上进行知识挖掘,包括聚类和分类;(3)利用cdin实现特征嵌入学习,使用户可以与cdin交互访问内容;(4)为医院再入院决策支持提供原型系统。该项目的方法范围不仅将丰富挖掘复杂结构和丰富内容网络的算法和解决方案,而不是静态网络,而且还将使现有的卫生信息系统从传统数据库转向以网络为中心的系统。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Incorporating Relational Knowledge in Explainable Fake News Detection
  • DOI:
    10.1007/978-3-030-75768-7_32
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kun Wu;Xu Yuan;Yue Ning
  • 通讯作者:
    Kun Wu;Xu Yuan;Yue Ning
Active Learning with Multi-Granular Graph Auto-Encoder
Accelerating Serverless Computing by Harvesting Idle Resources
  • DOI:
    10.1145/3485447.3511979
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hanfei Yu;Hao Wang;Jian Li;Xuemei Yuan;Seung-Jong Park
  • 通讯作者:
    Hanfei Yu;Hao Wang;Jian Li;Xuemei Yuan;Seung-Jong Park
GPU-Assisted Memory Expansion
Learning Interpretable Representations with Informative Entanglements
  • DOI:
    10.24963/ijcai.2020/273
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yifan Hao;H. Cao
  • 通讯作者:
    Yifan Hao;H. Cao
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chee-Hung Chu其他文献

Chee-Hung Chu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: VirtualLab: Integrating Deep Graph Learning and Causal Inference for Multi-Agent Dynamical Systems
协作研究:III:媒介:VirtualLab:集成多智能体动态系统的深度图学习和因果推理
  • 批准号:
    2312501
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Knowledge discovery from highly heterogeneous, sparse and private data in biomedical informatics
合作研究:III:中:生物医学信息学中高度异构、稀疏和私有数据的知识发现
  • 批准号:
    2312862
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312930
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: New Machine Learning Empowered Nanoinformatics System for Advancing Nanomaterial Design
合作研究:III:媒介:新的机器学习赋能纳米信息学系统,促进纳米材料设计
  • 批准号:
    2347592
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
  • 批准号:
    2406648
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了