Finite time blowup for supercritical equations, and correlations of multiplicative functions
超临界方程的有限时间爆炸以及乘法函数的相关性
基本信息
- 批准号:1764034
- 负责人:
- 金额:$ 68.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project concerns two mathematical research directions. The first direction involves the mathematical study of waves such as water waves or sound waves. Both physical experiments and numerical simulations exhibit the phenomenon of turbulence: fluids that are initially very smoothly-flowing and slowly-varying can develop much more complicated eddies and fine-scale behavior. It remains unknown whether the equations that model fluid dynamics can give rise to "blow-up," in which some portion of the simulated fluid achieves infinite velocity. This project studies the extent to which blow-up can be "engineered" by tweaking the equations that model fluid mechanics, such as changing the number of dimensions in space. The second direction involves questions related to the notorious twin prime conjecture in number theory. This conjecture asserts that there are infinitely many pairs of prime numbers that are separated by a distance of two, such as 3 and 5, 5 and 7, 11 and 13, 17 and 19, and so on. It is still not known whether the assertion is true, but recently much progress has been made on understanding more tractable questions, such as how often it occurs that a pair of numbers, separated by a distance of two, both have an odd number of prime factors. This project aims to develop these promising new techniques further, with potential application to proving or disproving the twin primes conjecture and to other difficult, important questions in number theory. In more detail, the fluid dynamical part of the project focuses primarily on variants of the Euler equations for incompressible fluids, especially higher-dimensional Euler equations on Riemannian manifolds. The ability to select the metric of such a manifold gives a promising way to "program" the equations to exhibit certain desirable behavior. Prior work has established that the dynamics of certain quadratic ordinary differential equations can be programmed into such systems. The project will continue work towards exhibiting finite-time blow-up (or other interesting behavior, such as Turing universality) for these models. For the number-theoretic aspects of the project, the investigator and collaborators aim to establish further cases of the Chowla conjecture (or its logarithmically-averaged variants) on correlations of the Liouville function, by combining the recently-developed entropy decrement method with techniques from analytic number theory, combinatorics, and ergodic theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及两个数学研究方向。第一个方向涉及波的数学研究,如水波或声波。物理实验和数值模拟都表现出湍流现象:最初非常平滑流动和缓慢变化的流体可以发展出更复杂的涡流和精细尺度行为。 模拟流体动力学的方程是否会引起“爆炸”,即模拟流体的某些部分达到无限大的速度,这仍然是未知的。这个项目研究了通过调整模拟流体力学的方程,比如改变空间维度的数量,可以在多大程度上“设计”爆破。第二个方向涉及数论中臭名昭著的孪生素数猜想。这个猜想断言有无限多对素数被2的距离分开,例如3和5,5和7,11和13,17和19,等等。现在还不知道这个断言是否正确,但最近在理解更容易处理的问题上取得了很大进展,例如一对数字,两者相隔2的距离,都有奇数个素因子。该项目旨在进一步发展这些有前途的新技术,并可能应用于证明或反驳孪生素数猜想以及数论中其他困难,重要的问题。更详细地说,该项目的流体动力学部分主要集中在不可压缩流体的欧拉方程的变体上,特别是黎曼流形上的高维欧拉方程。选择这种流形的度量的能力给出了一种有希望的方法来“编程”方程以表现出某些期望的行为。先前的工作已经建立了某些二次常微分方程的动态可以编程到这样的系统。 该项目将继续致力于展示这些模型的有限时间爆破(或其他有趣的行为,如图灵普适性)。对于该项目的数论方面,研究人员和合作者的目标是建立Chowla猜想的进一步案例(或其对数平均变体)通过将最近开发的熵减量方法与解析数论、组合数学、该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Terence Tao其他文献
WITH WHITE NOISE POTENTIAL ON COMPACT SURFACES
紧凑表面上可能存在白噪声
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
A. N. M. Ouzard;I. M. Z. Achhuber;Vadim Kaloshin;A. Mazzucato;Richard B. Melrose Massachussets;Frank Merle;Werner Müller;Igor Rodnianski;Terence Tao;Michael E. Taylor;Dan Virgil;J. Wright - 通讯作者:
J. Wright
Infinite partial sumsets in the primes
- DOI:
10.1007/s11854-023-0323-y - 发表时间:
2023-12-22 - 期刊:
- 影响因子:0.900
- 作者:
Terence Tao;Tamar Ziegler - 通讯作者:
Tamar Ziegler
A physical space approach to wave equation bilinear estimates
- DOI:
10.1007/bf02868479 - 发表时间:
2002-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Sergiu Klainerman;Igor Rodnianski;Terence Tao - 通讯作者:
Terence Tao
Undecidability of translational monotilings
平移单块的不可判定性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Rachel Greenfeld;Terence Tao - 通讯作者:
Terence Tao
On the cone of curves of an abelian variety
在阿贝尔簇的曲线锥体上
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Thomas Bauer;G. R. Everest;Allan Greenleaf;Andreas Seeger;Nobuo Hara;Yujiro Kawamata;Markus Keel;Terence Tao;Alexander Kumjian;P. Muhly;Jean N. Renault;Dana P. Williams;M. Pollicott;Richard Sharp;A. Sinclair;Roger Smith;Eng;Chen - 通讯作者:
Chen
Terence Tao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Terence Tao', 18)}}的其他基金
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
$ 68.05万 - 项目类别:
Continuing Grant
Conference: Spectral Theory and Partial Differential Equations
会议:谱理论和偏微分方程
- 批准号:
1301620 - 财政年份:2013
- 资助金额:
$ 68.05万 - 项目类别:
Standard Grant
Random matrices, arithmetic combinatorics, and incidence geometry
随机矩阵、算术组合和关联几何
- 批准号:
1266164 - 财政年份:2013
- 资助金额:
$ 68.05万 - 项目类别:
Continuing Grant
Global Behaviour of Critical Nonlinear PDE
临界非线性偏微分方程的全局行为
- 批准号:
0649473 - 财政年份:2007
- 资助金额:
$ 68.05万 - 项目类别:
Continuing Grant
相似国自然基金
SERS探针诱导TAM重编程调控头颈鳞癌TIME的研究
- 批准号:82360504
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
华蟾素调节PCSK9介导的胆固醇代谢重塑TIME增效aPD-L1治疗肝癌的作用机制研究
- 批准号:82305023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于MRI的机器学习模型预测直肠癌TIME中胶原蛋白水平及其对免疫T细胞调控作用的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
结直肠癌TIME多模态分子影像分析结合深度学习实现疗效评估和预后预测
- 批准号:62171167
- 批准年份:2021
- 资助金额:57 万元
- 项目类别:面上项目
Time-lapse培养对人类胚胎植入前印记基因DNA甲基化的影响研究
- 批准号:
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
萱草花开放时间(Flower Opening Time)的生物钟调控机制研究
- 批准号:31971706
- 批准年份:2019
- 资助金额:59.0 万元
- 项目类别:面上项目
高频数据波动率统计推断、预测与应用
- 批准号:71971118
- 批准年份:2019
- 资助金额:50.0 万元
- 项目类别:面上项目
Time-of-Flight深度相机多径干扰问题的研究
- 批准号:61901435
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于线性及非线性模型的高维金融时间序列建模:理论及应用
- 批准号:71771224
- 批准年份:2017
- 资助金额:49.0 万元
- 项目类别:面上项目
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 68.05万 - 项目类别:
Studentship
Diffractometer for time-resolved in-situ high temperature powder diffraction and X-ray reflectivity
用于时间分辨原位高温粉末衍射和 X 射线反射率的衍射仪
- 批准号:
530760073 - 财政年份:2024
- 资助金额:
$ 68.05万 - 项目类别:
Major Research Instrumentation
HoloSurge: Multimodal 3D Holographic tool and real-time Guidance System with point-of-care diagnostics for surgical planning and interventions on liver and pancreatic cancers
HoloSurge:多模态 3D 全息工具和实时指导系统,具有护理点诊断功能,可用于肝癌和胰腺癌的手术规划和干预
- 批准号:
10103131 - 财政年份:2024
- 资助金额:
$ 68.05万 - 项目类别:
EU-Funded
Big time crystals: a new paradigm in condensed matter
大时间晶体:凝聚态物质的新范例
- 批准号:
DP240101590 - 财政年份:2024
- 资助金额:
$ 68.05万 - 项目类别:
Discovery Projects
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 68.05万 - 项目类别:
Standard Grant
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 68.05万 - 项目类别:
Continuing Grant
CAREER: Secure Miniaturized Bio-Electronic Sensors for Real-Time In-Body Monitoring
职业:用于实时体内监测的安全微型生物电子传感器
- 批准号:
2338792 - 财政年份:2024
- 资助金额:
$ 68.05万 - 项目类别:
Continuing Grant
NSF Convergence Accelerator Track L: Smartphone Time-Resolved Luminescence Imaging and Detection (STRIDE) for Point-of-Care Diagnostics
NSF 融合加速器轨道 L:用于即时诊断的智能手机时间分辨发光成像和检测 (STRIDE)
- 批准号:
2344476 - 财政年份:2024
- 资助金额:
$ 68.05万 - 项目类别:
Standard Grant
CAREER: Towards Safety-Critical Real-Time Systems with Learning Components
职业:迈向具有学习组件的安全关键实时系统
- 批准号:
2340171 - 财政年份:2024
- 资助金额:
$ 68.05万 - 项目类别:
Continuing Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
- 批准号:
2305609 - 财政年份:2024
- 资助金额:
$ 68.05万 - 项目类别:
Fellowship Award