Nano-elasticity of lipid membranes: continuum theory, molecular-level simulations, and application to dynamin-induced membrane fission

脂质膜的纳米弹性:连续介质理论、分子水平模拟以及在动力诱导膜裂变中的应用

基本信息

  • 批准号:
    1764257
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Markus Deserno from Carnegie Mellon University is supported by the Chemical Theory, Models and Computational Methods Program in the Division of Chemistry to develop predictive theoretical and computational models for lipid membranes at very small scales. The Condensed Matter and Materials Theory Program in the Division of Materials Research also contributes to this award. Lipid membranes are a major structural components of all living cells. They separate a cell from its environment and often divide cells into smaller specialized compartments, called "organelles". In dividing cells, membranes assume a great variety of intricately shapes. While researchers have excellent theoretical and computational models to describe some shapes, others are less well understood, even though these shapes may have key roles in cellular processes. Professor Deserno and his research group are developing better theories for understanding the shapes of lipid membranes and how this affects the cell function. Furthermore, this project advances learning, by providing many examplesfor classroom and homework material in both undergraduate and graduate courses (statistical thermodynamics, biological physics), as well as pedagogically-instructive scripts for theoretical or computational modeling tutorials. The topic offers opportunities for productive undergraduate research projects. Special efforts are made to attract minority students to science using outreach projects with both middle and high schools in Pittsburgh. Demonstration materials are made of everyday materials such as paper and plastic foils. The ability to manipulate such materials quantitatively guide students from intuitively-familiar ideas about mechanical stability, as applied to buildings and bridges, to their unexpected applications in cell biology?related to understanding the human body.This award supports theoretical and computational research and education to improve the quantitative description of lipid membrane elasticity at the nanoscale. The project seeks to extend the classical coupling between membrane curvature and lipid tilt to biquadratic order, opening the door to understanding numerous new cell biology phenomena. The research group confronts the refined theory with a broad repertoire of computational and experimental data, to thoroughly test the theory and extract underlying elastic parameters needed for further predictions. The researchers extend the theoretical framework to encompass the challenging but biologically common situation of membranes that not only consists of a mixture of lipids, but whose composition might differ between the two membrane leaflets (asymmetric membranes). Finally, the team predicts emergent membrane properties such as edge tensions or fission barriers, or more generally, situations involving highly curved regions that push present elastic membrane theories beyond their limits. As an especially important application, the process of membrane fission is being studied through a combination of theoretical and coarse-grained computational modeling. This work is elucidating the stresses between the lipid membrane and the enclosing dynamin filament, the importance of symmetry-breaking end-effects, and the role of thermal fluctuations; and the consequence of active constriction.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
来自卡内基梅隆大学的Markus Rumonno得到了化学系化学理论,模型和计算方法项目的支持,以开发非常小规模的脂质膜预测理论和计算模型。材料研究部的凝聚态物质和材料理论计划也有助于获得该奖项。 脂质膜是所有活细胞的主要结构组成部分。它们将细胞从其环境中分离出来,并经常将细胞分成更小的专门区室,称为“细胞器”。在分裂的细胞中,细胞膜呈现出各种各样复杂的形状。虽然研究人员有很好的理论和计算模型来描述一些形状,但其他形状却不太清楚,尽管这些形状可能在细胞过程中起着关键作用。Alberno教授和他的研究小组正在开发更好的理论来理解脂质膜的形状以及它如何影响细胞功能。此外,该项目通过提供本科和研究生课程(统计热力学,生物物理学)的课堂和家庭作业材料的许多示例以及理论或计算建模教程的教学指导性脚本来促进学习。该主题为富有成效的本科生研究项目提供了机会。 特别努力吸引少数民族学生到科学利用推广项目与初中和高中在匹兹堡。 演示材料由日常材料制成,如纸和塑料箔。定量操作这些材料的能力引导学生从直观熟悉的机械稳定性的想法,适用于建筑物和桥梁,他们意想不到的应用在细胞生物学?该奖项支持理论和计算研究和教育,以改善纳米尺度下脂质膜弹性的定量描述。该项目旨在将膜曲率和脂质倾斜之间的经典耦合扩展到双二阶,为理解许多新的细胞生物学现象打开大门。 该研究小组用广泛的计算和实验数据库来面对精炼的理论,以彻底测试理论并提取进一步预测所需的潜在弹性参数。 研究人员扩展了理论框架,以涵盖具有挑战性但生物学上常见的膜情况,该膜不仅由脂质混合物组成,而且其组成在两个膜小叶之间可能不同(不对称膜)。 最后,该团队预测了涌现的膜特性,如边缘张力或裂变屏障,或者更一般地说,涉及高度弯曲区域的情况,这些区域将目前的弹性膜理论推到了极限之外。作为一个特别重要的应用,膜裂变的过程正在研究通过理论和粗粒度的计算建模相结合。这项工作阐明了脂质膜和封闭的动力蛋白丝之间的应力,破坏平衡的末端效应的重要性,热波动的作用;以及主动收缩的后果。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identifying systematic errors in a power spectral analysis of simulated lipid membranes
  • DOI:
    10.1063/5.0049448
  • 发表时间:
    2021-06-07
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Erguder, Muhammed F.;Deserno, Markus
  • 通讯作者:
    Deserno, Markus
Probing Nanoparticle/Membrane Interactions by Combining Amphiphilic Diblock Copolymer Assembly and Plasmonics
  • DOI:
    10.1021/acs.jpcb.9b10469
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Koch;S. Morsbach;T. Bereau;G. Lévêque;H. Butt;M. Deserno;K. Landfester;G. Fytas
  • 通讯作者:
    A. Koch;S. Morsbach;T. Bereau;G. Lévêque;H. Butt;M. Deserno;K. Landfester;G. Fytas
Stiffening transition in asymmetric lipid bilayers: The role of highly ordered domains and the effect of temperature and size
不对称脂质双层的硬化转变:高度有序结构域的作用以及温度和尺寸的影响
  • DOI:
    10.1063/5.0028255
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hossein, Amirali;Deserno, Markus
  • 通讯作者:
    Deserno, Markus
Stabilizing Leaflet Asymmetry under Differential Stress in a Highly Coarse-Grained Lipid Membrane Model
Mechanical properties of lipid bilayers: a note on the Poisson ratio
脂质双层的机械特性:关于泊松比的注释
  • DOI:
    10.1039/c9sm01290g
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Terzi, M. Mert;Deserno, Markus;Nagle, John F.
  • 通讯作者:
    Nagle, John F.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Markus Deserno其他文献

Identifying Two-State Transitions by Microcanonical Analysis: Coarse-Grained Simulations of Helical Peptides
  • DOI:
    10.1016/j.bpj.2009.12.3470
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Tristan Bereau;Michael Bachmann;Markus Deserno
  • 通讯作者:
    Markus Deserno
Fluid lipid membranes – a primer
流体脂质膜 – 底漆
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Markus Deserno
  • 通讯作者:
    Markus Deserno
Nano-scale “sticky tape” stabilizes open-edge boundary conditions in MD simulations of asymmetric membranes
  • DOI:
    10.1016/j.bpj.2022.11.1348
  • 发表时间:
    2023-02-10
  • 期刊:
  • 影响因子:
  • 作者:
    Samuel L. Foley;Markus Deserno
  • 通讯作者:
    Markus Deserno
Looking Under the Hood of Membrane Fluctuation Analysis. The Systematics of Seemingly Harmless Choices
  • DOI:
    10.1016/j.bpj.2020.11.2048
  • 发表时间:
    2021-02-12
  • 期刊:
  • 影响因子:
  • 作者:
    Muhammed F. Erguder;Markus Deserno
  • 通讯作者:
    Markus Deserno
A Study of Lipid Transferability of a Bottom-Up Implicit Solvent Coarse-Grained Model for Bilayer Membranes
  • DOI:
    10.1016/j.bpj.2009.12.3067
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Zun-Jing Wang;Markus Deserno
  • 通讯作者:
    Markus Deserno

Markus Deserno的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Markus Deserno', 18)}}的其他基金

The Role of Differential Stress in the Physics of Asymmetric Lipid Membranes
差异应力在不对称脂质膜物理学中的作用
  • 批准号:
    2102316
  • 财政年份:
    2021
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Predicting emergent continuum-elastic properties of lipid membranes from molecular-level simulations via consistent and model-free scale bridging
通过一致且无模型的尺度桥接,从分子水平模拟中预测脂膜的新兴连续弹性特性
  • 批准号:
    1464926
  • 财政年份:
    2015
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Collaborative Research: Multiscale molecular simulations of protein-mediated bilayer fusion
合作研究:蛋白质介导的双层融合的多尺度分子模拟
  • 批准号:
    1330226
  • 财政年份:
    2013
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant

相似海外基金

Endothelial biomechanics in vascular aging
血管老化中的内皮生物力学
  • 批准号:
    10804883
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
Nanoscopic Membrane Modulations Induced by Nanoscale Oligomers
纳米级低聚物诱导的纳米膜调节
  • 批准号:
    10790511
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
CAREER: Cellular Mechanics at the Nanoscale: Lipid Membrane Elasticity and Force Transduction in Mechanosensitive Proteins
职业:纳米尺度的细胞力学:机械敏感蛋白中的脂质膜弹性和力传导
  • 批准号:
    2326678
  • 财政年份:
    2023
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Fusion pores in endocrine and synaptic exocytosis
内分泌和突触胞吐作用中的融合孔
  • 批准号:
    10449673
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
Endosomal escape of lipid-based nanoparticles comprising Gaussian curvature lipids
包含高斯曲率脂质的基于脂质的纳米粒子的内体逃逸
  • 批准号:
    10446400
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
Endosomal escape of lipid-based nanoparticles comprising Gaussian curvature lipids
包含高斯曲率脂质的基于脂质的纳米粒子的内体逃逸
  • 批准号:
    10640114
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
MPZL3 as a Therapeutically Targetable Mitochondrial Regulator of Sebaceous Gland Homeostasis and Sebum Production
MPZL3 作为皮脂腺稳态和皮脂产生的治疗性靶向线粒体调节剂
  • 批准号:
    10445598
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
High-Throughput, Multiplexing-Ready Intracellular Pressure Probes
高通量、可多重使用的细胞内压力探针
  • 批准号:
    10705580
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
Fusion pores in endocrine and synaptic exocytosis
内分泌和突触胞吐作用中的融合孔
  • 批准号:
    10615868
  • 财政年份:
    2022
  • 资助金额:
    $ 48万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了