Research Initiation Award: Remote Sensing for Flood Modeling and Management
研究启动奖:洪水建模和管理遥感
基本信息
- 批准号:1800768
- 负责人:
- 金额:$ 29.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Research Initiation Awards provide support for junior and mid-career faculty at Historically Black Colleges and Universities who are building new research programs or redirecting and rebuilding existing research programs. It is expected that the award helps to further the faculty member's research capability and effectiveness, improves research and teaching at the home institution, and involves undergraduate students in research experiences. The award to North Carolina A&T State University has potential broader impacts in a number of areas. The goal of the project is to gain fundamental understanding of unarmed aerial vehicle (UAV) data processing and to develop a research program on remote sensing data processing for environmental management at the university. Undergraduate students and high school students will gain research experiences and the research will be integrated in a number of undergraduate and graduate courses.Remote sensing data have increasingly been used to develop flood modeling; however, traditional satellite-based techniques are challenging due to the presence of cloud cover, satellite revisit time, viewing angle limitations, and the complexity of urban landscapes. The recent development of UAVs has created a new tool for collecting data to use in geospatial research. Applying UAVs to collect data with an appropriate flight mode and optimized sensors offers the possibility of overcoming issues associated with using satellite-based sensor data. This project aims to investigate and evaluate the application of UAV data for flood modeling and management. More generally, this will improve GIS and remote sensing capabilities for UAV-based simulation and modeling of 3D dynamic phenomena such as floods, forest fires, and air pollution. The proposed project will contribute to the scientific literature by developing a novel method for 3D water surface reconstruction and delineation of flood boundary and water level measurements using UAV data. These measurements can be integrated with flood models to identify areas vulnerable to future flooding.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
研究启动奖为历史上黑人学院和大学的初级和中级职业教师提供支持,他们正在建立新的研究项目或重新定向和重建现有的研究项目。预计该奖项将有助于进一步提高教师的研究能力和效率,改善家庭机构的研究和教学,并使本科生参与研究经验。授予北卡罗来纳州AT州立大学的奖项在许多领域都有潜在的更广泛的影响。&该项目的目标是获得对非武装飞行器(UAV)数据处理的基本了解,并在该大学制定一个用于环境管理的遥感数据处理研究计划。本科生和高中生将获得研究经验,研究将被整合到一些本科和研究生课程中。遥感数据越来越多地用于开发洪水建模;然而,传统的基于卫星的技术具有挑战性,因为存在云层覆盖,卫星重访时间,视角限制和城市景观的复杂性。最近无人机的发展创造了一个新的工具,用于收集数据,用于地理空间研究。应用无人机以适当的飞行模式和优化的传感器收集数据,可以克服与使用卫星传感器数据相关的问题。该项目旨在调查和评估无人机数据在洪水建模和管理中的应用。更广泛地说,这将提高GIS和遥感能力,用于基于无人机的洪水、森林火灾和空气污染等3D动态现象的模拟和建模。拟议的项目将通过开发一种新的三维水面重建方法和使用无人机数据划定洪水边界和水位测量来贡献科学文献。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DEVELOPING GEOSPATIAL SCIENTISTS – USING STUDENTS AS PARTNERS IN DRONE RESEARCH
培养地理空间科学家 — 让学生作为无人机研究的合作伙伴
- DOI:10.5194/isprs-archives-xliv-m-2-2020-69-2020
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:McKee, T.;Hashemi-Beni, L.
- 通讯作者:Hashemi-Beni, L.
UAV Remote Sensing Assessment of Crop Growth
- DOI:10.14358/pers.21-00060r2
- 发表时间:2021-12-01
- 期刊:
- 影响因子:1.3
- 作者:Dorbu, Freda Elikem;Hashemi-Beni, Leila;Shahbazi, Abolghasem
- 通讯作者:Shahbazi, Abolghasem
Inundated Vegetation Mapping Using SAR Data: A Comparison of Polarization Configurations of UAVSAR L-Band and Sentinel C-Band
- DOI:10.3390/rs14246374
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:A. Salem;L. Beni
- 通讯作者:A. Salem;L. Beni
Deep Convolutional Neural Networks for Weeds and Crops Discrimination From UAS Imagery
- DOI:10.3389/frsen.2022.755939
- 发表时间:2022-02-11
- 期刊:
- 影响因子:0
- 作者:Hashemi-Beni, Leila;Gebrehiwot, Asmamaw;Dorbu, Freda
- 通讯作者:Dorbu, Freda
Combining Multiple Geospatial Data for Estimating Aboveground Biomass in North Carolina Forests
- DOI:10.3390/rs13142731
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:L. Beni;L. Kurkalova;T. Mulrooney;Chinazor S. Azubike
- 通讯作者:L. Beni;L. Kurkalova;T. Mulrooney;Chinazor S. Azubike
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leila Hashemi Beni其他文献
Comparative analysis of Sentinel-2 and PlanetScope imagery for chlorophyll-a prediction using machine learning models
利用机器学习模型对 Sentinel-2 和 PlanetScope 影像进行叶绿素-a 预测的对比分析
- DOI:
10.1016/j.ecoinf.2024.102988 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:7.300
- 作者:
Eden T. Wasehun;Leila Hashemi Beni;Courtney A. Di Vittorio;Christopher M. Zarzar;Kyana R.L. Young - 通讯作者:
Kyana R.L. Young
Leila Hashemi Beni的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Research Initiation Award: Integrated Approach Toward Examining Fecal Indicator Bacteria Trends in a Coastal Watershed
研究启动奖:检查沿海流域粪便指示细菌趋势的综合方法
- 批准号:
2300319 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
- 批准号:
2247163 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Research Initiation Award: A GNN+BiMCLSTM Based Framework to Model, Predict, and Traceback Malware Strains
研究启动奖:基于 GNN BiMCLSTM 的框架,用于建模、预测和追溯恶意软件菌株
- 批准号:
2300405 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
- 批准号:
2300445 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Research Initiation Award: Highly Stable Nanoparticle-Doped Metal-Organic Frameworks for Applications in Water Purification
研究启动奖:用于水净化应用的高度稳定的纳米颗粒掺杂金属有机框架
- 批准号:
2344742 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Research Initiation Award: Implementing the Next-Generation IoT Ecosystem with AI Capabilities
研究启动奖:利用人工智能能力实施下一代物联网生态系统
- 批准号:
2200377 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Research Initiation Award: Thermal Decomposition of Four-membered Heterocyclic Peroxides, Data Mining in Nonadiabatic Trajectories, and Chemiexcitation Efficiency
研究启动奖:四元杂环过氧化物的热分解、非绝热轨迹数据挖掘、化学激发效率
- 批准号:
2300321 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Research Initiation Award: Redox Regulated Phosphorylation of BCAT by PKC
研究启动奖:PKC 氧化还原调节 BCAT 磷酸化
- 批准号:
2401097 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Research Initiation Award: Analysis of Glycoprotein Composition and Function of PGE2 EP Receptors in Mammary-derived Cells
研究启动奖:乳腺细胞中 PGE2 EP 受体的糖蛋白组成和功能分析
- 批准号:
2300448 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant
Research Initiation Award: Investigating Instructional Conditions for Robust Learning in Biology
研究启动奖:研究生物学稳健学习的教学条件
- 批准号:
2300454 - 财政年份:2023
- 资助金额:
$ 29.98万 - 项目类别:
Standard Grant