RUI: Structure and Representations of Finite Groups
RUI:有限群的结构和表示
基本信息
- 批准号:1801156
- 负责人:
- 金额:$ 11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is in the area of group theory and the representation theory of finite groups. The study of group theory is motivated by the desire to understand the symmetry of an object, whether it be in nature, art, communication networks, or any other place that symmetry might play a role. Finite group representation theory has applications in physics, chemistry, and other natural sciences, and in recent years, research in group theory and other algebraic areas has also had a significant impact on technological advances, such as in cryptography and coding theory. Representation theory is a tool used to better understand the structure of a group and the symmetries it represents. Roughly speaking, representations provide a way to view an abstract group as a collection of matrices whose structure is often easier to understand. This project focuses on a number of problems that seek to relate the representation theory of a finite group to the structure of the group, which in turn may give more insight into the real-world objects whose symmetries are encoded in these groups and have implications for the various applications of group theory. Several of the problems under consideration involve computations and other components that are well-suited for involving undergraduate students and introducing them to group theory and mathematical research, and the investigator will recruit, encourage, and mentor students to pursuing research activities related to this project.More specifically, this project is focused on irreducible characters of finite groups of Lie type, which make up the largest collection of finite simple groups. It involves relating the character theory of a group to that of certain subgroups, through local-global conjectures and irreducible character restrictions, in addition to relating character fields of values to properties of conjugacy classes of the group. Several of the questions in the project aim to further the current knowledge in the field regarding the action of Galois automorphisms on characters of groups of Lie type. Since the effect of various group actions on parametrizations of these characters is an especially problematic component in a number of local-global conjectures and other main problems regarding the representations of groups of Lie type, this is of interest to many other problems in the area. In particular, part of the project concerns Navarro's Galois-McKay conjecture for groups of Lie type, as well as studying reality for conjugacy classes and characters of groups of Lie type.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目是在群论和有限群的表示理论领域。研究群论的动机是希望了解一个对象的对称性,无论它是在自然界、艺术、通信网络或任何其他地方,对称性可能发挥作用。有限群表示理论在物理、化学等自然科学中都有应用,近年来,群论和其他代数领域的研究也对密码学和编码学等技术的进步产生了重大影响。表象理论是用来更好地理解群的结构和它所代表的对称性的工具。粗略地说,表示法提供了一种将抽象组视为矩阵集合的方法,这些矩阵的结构通常更容易理解。这个项目集中在一些问题上,这些问题试图将有限群的表示理论与群的结构联系起来,这反过来可能使我们更深入地了解现实世界中的对象,这些对象的对称性被编码在这些群中,并对群论的各种应用具有影响。一些正在考虑的问题涉及计算和其他组件,非常适合让本科生参与并将他们介绍给群论和数学研究,调查人员将招募、鼓励和指导学生从事与此项目相关的研究活动。更具体地说,此项目专注于有限李型群的不可约特征标,它构成了有限单群的最大集合。它涉及到通过局部-整体猜想和不可约特征标限制将群的特征标理论与某些子群的特征标理论联系起来,以及将值的特征标域与群的共轭类的性质联系起来。该项目中的几个问题旨在加深该领域中关于Galois自同构在Lie类型群的特征标上的作用的现有知识。由于各种群作用对这些特征的参数化的影响在许多局部-全局猜想和关于Lie类型群的表示的其他主要问题中是一个特别有问题的组成部分,这对该领域的许多其他问题是感兴趣的。特别是,该项目的一部分涉及纳瓦罗关于Lie类型群的Galois-McKay猜想,以及研究共轭类和Lie类型群的特征的实在性。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Principal blocks with 5 irreducible characters
- DOI:10.1016/j.jalgebra.2021.06.009
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Noelia Rizo;A. S. Fry;Carolina Vallejo
- 通讯作者:Noelia Rizo;A. S. Fry;Carolina Vallejo
Principal 2-blocks and Sylow 2-subgroups: PRINCIPAL 2-BLOCKS AND SYLOW 2-SUBGROUPS
Primary 2-blocks 和 Sylow 2-subgroups: PRINCIPAL 2-BLOCKS AND SYLOW 2-SUBGROUPS
- DOI:10.1112/blms.12181
- 发表时间:2018
- 期刊:
- 影响因子:0.9
- 作者:Schaeffer Fry, A. A.;Taylor, Jay
- 通讯作者:Taylor, Jay
On the number of irreducible real-valued characters of a finite group
关于有限群的不可约实值特征的个数
- DOI:10.1016/j.jalgebra.2020.03.008
- 发表时间:2020
- 期刊:
- 影响因子:0.9
- 作者:Hung, Nguyen Ngoc;Schaeffer Fry, A.A.;Tong-Viet, Hung P.;Vinroot, C. Ryan
- 通讯作者:Vinroot, C. Ryan
Galois automorphisms on Harish-Chandra series and Navarro’s self-normalizing Sylow $2$-subgroup conjecture
Harish-Chandra 级数上的伽罗瓦自同构和 Navarro 的自归一化 Sylow $2$ 子群猜想
- DOI:10.1090/tran/7590
- 发表时间:2019
- 期刊:
- 影响因子:1.3
- 作者:Schaeffer Fry, A. A.
- 通讯作者:Schaeffer Fry, A. A.
Galois-equivariant McKay bijections for primes dividing q − 1
素数除 q ≤ 1 的伽罗瓦等变麦凯双射
- DOI:10.1007/s11856-021-2266-2
- 发表时间:2021
- 期刊:
- 影响因子:1
- 作者:Schaeffer Fry, A. A.
- 通讯作者:Schaeffer Fry, A. A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mandi Schaeffer Fry其他文献
Characters of ?’-degree
?’度的字符
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1
- 作者:
E. Giannelli;Mandi Schaeffer Fry;Carolina Vallejo - 通讯作者:
Carolina Vallejo
Mandi Schaeffer Fry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mandi Schaeffer Fry', 18)}}的其他基金
Conference: Group Theory and Number Theory: Interactions
会议:群论和数论:相互作用
- 批准号:
2321445 - 财政年份:2023
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
RUI: Galois Automorphisms and Local-Global Properties of Representations of Finite Groups
RUI:有限群表示的伽罗瓦自同构和局部全局性质
- 批准号:
2100912 - 财政年份:2021
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Summer School for Young Researchers on Representations of Finite Groups
有限群表示青年研究人员暑期学校
- 批准号:
2001077 - 财政年份:2020
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
相似海外基金
From pattern to function: eco-evolutionary representations of complex spatial structure for the new era of spatial biology
从模式到功能:空间生物学新时代复杂空间结构的生态进化表征
- 批准号:
10501428 - 财政年份:2022
- 资助金额:
$ 11万 - 项目类别:
Lie algebras and superalgebras: representations and structure theory
李代数和超代数:表示和结构理论
- 批准号:
RGPIN-2018-06417 - 财政年份:2022
- 资助金额:
$ 11万 - 项目类别:
Discovery Grants Program - Individual
Electronic Structure Models Using Coarse-Grained Representations
使用粗粒度表示的电子结构模型
- 批准号:
2154916 - 财政年份:2022
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
From pattern to function: eco-evolutionary representations of complex spatial structure for the new era of spatial biology
从模式到功能:空间生物学新时代复杂空间结构的生态进化表征
- 批准号:
10710177 - 财政年份:2022
- 资助金额:
$ 11万 - 项目类别:
Lie algebras and superalgebras: representations and structure theory
李代数和超代数:表示和结构理论
- 批准号:
RGPIN-2018-06417 - 财政年份:2021
- 资助金额:
$ 11万 - 项目类别:
Discovery Grants Program - Individual
Lie algebras and superalgebras: representations and structure theory
李代数和超代数:表示和结构理论
- 批准号:
RGPIN-2018-06417 - 财政年份:2020
- 资助金额:
$ 11万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Learning Design Representations: The Effect of Differential Geometric Manifolds on the Inference of Design Structure
职业:学习设计表示:微分几何流形对设计结构推理的影响
- 批准号:
1943699 - 财政年份:2020
- 资助金额:
$ 11万 - 项目类别:
Standard Grant
Structure and Representations of Infinite-dimensional Algebraic Supergroups
无限维代数超群的结构和表示
- 批准号:
19K14517 - 财政年份:2019
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Optimization based on discrete structure representations
基于离散结构表示的优化
- 批准号:
19H04174 - 财政年份:2019
- 资助金额:
$ 11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Lie algebras and superalgebras: representations and structure theory
李代数和超代数:表示和结构理论
- 批准号:
RGPIN-2018-06417 - 财政年份:2019
- 资助金额:
$ 11万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




