Collaborative Research: Tools for Noninvasive Nano-Optical Imaging of the Role of Extracellular Matrix in Pre-Malignant Breast Cancer
合作研究:细胞外基质在癌前乳腺癌中作用的无创纳米光学成像工具
基本信息
- 批准号:1803830
- 负责人:
- 金额:$ 36.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Despite extensive research, much is still unknown about factors that cause normal cells to become pre-cancerous cells. This project supports research into novel imaging methods to better understand how pre-cancerous cells are shaped by tissue fibers in their local environment, termed the extracellular matrix (ECM), and signals from surrounding cells. There is evidence that certain types of breast cancers, called basal-like breast cancers (BBCs,) progress more rapidly in response to changes in ECM nanostructure. Pre-cancerous BBCs are studied in a three-dimensional (3D), tissue-like environment to model many features of real tissues. The thick, 3D models are difficult to measure with traditional microscopes, however, and information about features that are too small to be seen with a microscope cannot be determined without killing the cells. This research addresses these limitations by developing nanoparticles that move inside the ECM and can be pulled with an external magnet. A non-invasive imaging technique that uses light waves, known as Optical coherence tomography (OCT), will be optimized and used to track nanoparticle motions and determine ECM pore size, fiber alignment, and stiffness. Studies will be performed in 3D models to reveal how the ECM is restructured in the very early stages of BBC. In addition, the research will answer the question of whether remodeling occurs differently in the presence of adjacent supporting cells or certain growth factors implicated in BBC progression. Fundamental new insights into BBC formation have potentially broad impacts on human health. The development of new imaging tools and novel optical-magnetic nanoparticles will be broadly useful for studying other 3D organ tissue models, which are of increasing interest as they reduce the use of animals while providing a controlled platform for scientific studies. Education and outreach activities are planned to engage middle and high school students and teachers in learning about optical physics and nanotechnology through lectures and hands-on activities. Another goal of the outreach activities is to foster the students' professional development, including raising their awareness about opportunities to pursue undergraduate degrees in STEM fields.This project addresses the need for tools to noninvasively assess ECM nanostructure and stiffness properties within 3D in vitro models of early stage breast cancer by employing plasmonic gold nanorods (GNRs) that readily diffuse into and access 3D cultures, in combination with OCT to provide depth-resolved imaging. The research is organized under three objectives. The first objective is to develop and validate diffusion tensor OCT of GNRs for measuring anisotropic matrix pore sizes, beginning with construction of an optical scanner to sense angle-dependent GNR diffusion with OCT and developing methods for parallelized scanning to obtain 6 unique angle measurements per sample voxel. GNRs of varying sizes will be synthesized to explore extending the pore size sensitivity range. This will be the first instrument capable of quantifying the diffusion tensor of particles over a spatial resolution scale of ~10 micrometers. The second objective is to develop and validate Magnetic GNRs for spatially-resolved matrix stiffness, beginning with development of a technology for real-time, spatially-resolved ECM stiffness measurement using magnetic GNRs (Mag-GNRs) in combination with magnetomotive OCT (MM-OCT). The method developed is expected to provide a stiffness parameter that is proportional to Young's modulus in collagen matrices. This will be the first magnetomotive method that can disentangle the coupling between particle density and stiffness by use of the novel Mag-GNRs. The third objective is to quantify nanoscale ECM properties during normal-to-pre-malignant progression in a 3D organotypic model of BBC. Using technologies developed under objectives 1 and 2, ECM nanostructure, alignment, and stiffness will be measured during the progression from normal breast to ductal carcinoma in situ (DCIS). Mammary epithelial cell organoids will be cocultured with stromal fibroblasts to recapitulate stromal-epithelial cell signaling. These techniques will be used to dis-ambiguate the effects that pore size and stiffness each confer on the behavior of mammary epithelial cell organoids. Specifically, because pre-malignant disease is characterized by increased fibroblast proliferation and increased density and alignment of ECM fibers, early-stage microenvironmental changes will be studied with an isogenic line of basal-like mammary cells that range from normal to DCIS-like. These experiments are expected to advance understanding of the distinct interactions that BBCs exhibit with the microenvironment during the progression from normal to pre-malignant disease.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管进行了广泛的研究,但关于导致正常细胞成为癌前细胞的因素仍有很多未知之处。 该项目支持研究新的成像方法,以更好地了解癌前细胞如何在其局部环境中被组织纤维(称为细胞外基质(ECM))和周围细胞的信号塑造。有证据表明,某些类型的乳腺癌,称为基底样乳腺癌(BBC),响应ECM纳米结构的变化而进展更快。在三维(3D)组织样环境中研究癌前BBC,以模拟真实的组织的许多特征。然而,厚的3D模型很难用传统的显微镜测量,并且在不杀死细胞的情况下无法确定太小而无法用显微镜看到的特征的信息。这项研究通过开发在ECM内部移动的纳米颗粒来解决这些局限性,并且可以用外部磁体拉动。 一种使用光波的非侵入性成像技术,称为光学相干断层扫描(OCT),将被优化并用于跟踪纳米颗粒运动和确定ECM孔径,纤维排列和刚度。研究将在3D模型中进行,以揭示ECM如何在BBC的早期阶段进行重组。 此外,该研究还将回答这样一个问题,即在邻近支持细胞或某些与BBC进展有关的生长因子存在的情况下,重塑是否会发生不同的变化。对BBC形成的基本新见解可能对人类健康产生广泛影响。新的成像工具和新型光磁纳米颗粒的开发将广泛用于研究其他3D器官组织模型,这些模型越来越受到关注,因为它们减少了动物的使用,同时为科学研究提供了可控平台。计划开展教育和外联活动,通过讲座和实践活动,让初中和高中学生和教师学习光学物理和纳米技术。外展活动的另一个目标是促进学生的专业发展,包括提高他们对攻读STEM领域本科学位的机会的认识。该项目解决了对工具的需求,通过使用容易扩散并进入3D培养物的等离子体金纳米棒(GNRs),在早期乳腺癌的3D体外模型中无创评估ECM纳米结构和刚度特性,与OCT结合以提供深度分辨成像。这项研究是根据三个目标组织的。 第一个目标是开发和验证用于测量各向异性基质孔径的GNR的扩散张量OCT,首先构建光学扫描仪以利用OCT感测角度依赖性GNR扩散,并开发并行扫描方法以获得每个样本体素的6个唯一角度测量值。将合成不同尺寸的GNR以探索扩大孔径灵敏度范围。这将是第一台能够在~10微米的空间分辨率范围内量化颗粒扩散张量的仪器。第二个目标是开发和验证用于空间分辨基质刚度的磁性GNR,首先开发使用磁性GNR(Mag-GNR)结合磁动式OCT(MM-OCT)进行实时空间分辨ECM刚度测量的技术。开发的方法预计将提供一个刚度参数,是成比例的胶原蛋白基质的杨氏模量。这将是第一个磁动力学方法,可以解开粒子密度和刚度之间的耦合,通过使用新的Mag-GNRs。 第三个目标是在BBC的3D器官型模型中量化正常至癌前进展期间的纳米级ECM特性。使用根据目标1和2开发的技术,将在从正常乳腺进展为导管原位癌(DCIS)的过程中测量ECM纳米结构、对齐和硬度。将乳腺上皮细胞类器官与基质成纤维细胞共培养,以重现基质-上皮细胞信号传导。这些技术将用于消除孔径和刚度各自对乳腺上皮细胞类器官行为的影响。具体而言,由于癌前病变的特征在于成纤维细胞增殖增加以及ECM纤维的密度和排列增加,因此将使用范围从正常到DCIS样的基底样乳腺细胞的等基因系研究早期微环境变化。这些实验预计将促进理解的独特的相互作用,BBCs表现出与微环境从正常到癌前疾病的进展。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterizing optical coherence tomography speckle fluctuation spectra of mammary organoids during suppression of intracellular motility
表征细胞内运动抑制期间乳腺类器官的光学相干断层扫描散斑波动光谱
- DOI:10.21037/qims.2019.08.15
- 发表时间:2020
- 期刊:
- 影响因子:2.8
- 作者:Yang, Lin;Yu, Xiao;Fuller, Ashley M.;Troester, Melissa A.;Oldenburg, Amy L.
- 通讯作者:Oldenburg, Amy L.
Plasmon-Coupled Gold Nanoparticles in Stretched Shape-Memory Polymers for Mechanical/Thermal Sensing
- DOI:10.1021/acsanm.1c00309
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Prachi Yadav;Mehedi H. Rizvi;B. Kuttich;Sumeet R. Mishra;Brian S. Chapman;Brian B. Lynch;T. Kraus-
- 通讯作者:Prachi Yadav;Mehedi H. Rizvi;B. Kuttich;Sumeet R. Mishra;Brian S. Chapman;Brian B. Lynch;T. Kraus-
Magnetic Alignment for Plasmonic Control of Gold Nanorods Coated with Iron Oxide Nanoparticles
氧化铁纳米粒子涂覆的金纳米棒的等离激元控制的磁对准
- DOI:10.1002/adma.202203366
- 发表时间:2022
- 期刊:
- 影响因子:29.4
- 作者:Rizvi, Mehedi H.;Wang, Ruosong;Schubert, Jonas;Crumpler, William D.;Rossner, Christian;Oldenburg, Amy L.;Fery, Andreas;Tracy, Joseph B.
- 通讯作者:Tracy, Joseph B.
Tracking the invasion of breast cancer cells in paper-based 3D cultures by OCT motility analysis
通过 OCT 运动分析追踪纸基 3D 培养物中乳腺癌细胞的侵袭
- DOI:10.1364/boe.382911
- 发表时间:2020
- 期刊:
- 影响因子:3.4
- 作者:McIntosh, Julie C.;Yang, Lin;Wang, Ting;Zhou, Haibo;Lockett, Matthew R.;Oldenburg, Amy L.
- 通讯作者:Oldenburg, Amy L.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Amy Oldenburg其他文献
Amy Oldenburg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Amy Oldenburg', 18)}}的其他基金
CAREER: Imaging multi-scale viscoelastic properties of cancer-associated remodeling
职业:对癌症相关重塑的多尺度粘弹性特性进行成像
- 批准号:
1351474 - 财政年份:2014
- 资助金额:
$ 36.65万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Preparing Future Middle and High School Mathematics Teachers to Lead Productive Geometry Discussions using Web-Based Dynamic Geometry Technology Tools
合作研究:帮助未来初中和高中数学教师使用基于网络的动态几何技术工具引导富有成效的几何讨论
- 批准号:
2235338 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别:
Standard Grant
Collaborative Research: Preparing Future Middle and High School Mathematics Teachers to Lead Productive Geometry Discussions using Web-Based Dynamic Geometry Technology Tools
合作研究:帮助未来初中和高中数学教师使用基于网络的动态几何技术工具引导富有成效的几何讨论
- 批准号:
2235393 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别:
Standard Grant
Collaborative Research: Supporting Pre-Service Teachers Mathematical Discourse through Co-Design of Teaching Simulation Tools
协作研究:通过教学模拟工具的共同设计支持职前教师的数学话语
- 批准号:
2315437 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别:
Standard Grant
Collaborative Research: Critical Data Stories: Co-Designing Remixing Tools with Teachers to Support Critical Data Literacy with Middle School Youth
合作研究:关键数据故事:与教师共同设计混音工具,以支持中学生的关键数据素养
- 批准号:
2302659 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: NEW: Building a Batteryless Computing Community through Access to Education, Testbeds, and Tools
合作研究:CCRI:新:通过获得教育、测试平台和工具构建无电池计算社区
- 批准号:
2235002 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别:
Standard Grant
Collaborative Research: Chemical Tools to Elucidate Glycolipid Biosynthesis and Transport in the Corynebacterineae
合作研究:阐明棒状杆菌亚科糖脂生物合成和运输的化学工具
- 批准号:
2303703 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别:
Standard Grant
Collaborative Research: GEO OSE Track 2: Sustainable Open Science Tools to Democratize Use of 3D Geomaterial Data
合作研究:GEO OSE 第 2 轨:可持续开放科学工具使 3D 岩土材料数据的使用民主化
- 批准号:
2324786 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别:
Standard Grant
Collaborative Research: Tools 4 Cells: Developing Next Generation Methods for Studying Cytoskeletal Factors in the Cell Nucleus
合作研究:工具 4 细胞:开发研究细胞核中细胞骨架因子的下一代方法
- 批准号:
2306188 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别:
Standard Grant
Research on tools to support remote collaborative learning of maker activities that leverage both software and hardware
研究支持利用软件和硬件的创客活动远程协作学习的工具
- 批准号:
22KJ1010 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Integrating Students’ Interests, Identities and Ways of Knowing with Network Visualization Tools to Explore Data Literacy Concepts
协作研究:将学生的兴趣、身份和认知方式与网络可视化工具相结合,探索数据素养概念
- 批准号:
2241706 - 财政年份:2023
- 资助金额:
$ 36.65万 - 项目类别:
Standard Grant