Graphene/Hydrogel Hybrid Field-Effect Transistors for Seamless Bioelectronic Interfacing
用于无缝生物电子接口的石墨烯/水凝胶混合场效应晶体管
基本信息
- 批准号:1803907
- 负责人:
- 金额:$ 24.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanoscale field-effect transistors represent a unique platform for real-time detection of biochemical and bioelectrical signals with unprecedented sensitivity and resolution, yet their translation toward applications under physiological conditions remains challenging. The goal of the project is to develop a hybrid sensing platform to overcome the intrinsic limitations of traditional field-effect transistor design by incorporating functional hydrogels as the interfacing material. The proposed sensor design not only provides a true biocompatible microenvironment for long-term, reliable molecular and cellular integration, but also enables the application of existing nanoelectronic toolsets in physiologically relevant conditions, thus allowing for new insights into many biologically significant processes. The proposed studies will impact positively on many aspects of public health by providing new opportunities in point-of-care diagnostics, in-vitro/in-vivo monitoring of disease progression, and clinical brain-machine interfaces. Furthermore, the investigators will emphasize the interdisciplinary link between advanced technology and the natural sciences to broaden STEM participation through summer internship, with special focus on underrepresented high-school students from local community. The overall objective of this proposal is to develop a hybrid nanoelectronic interface composed of graphene field-effect transistors and spatially-defined functional hydrogels for improved bioelectronic transduction at both the molecular and cellular levels. In particular, targeted photopolymerization will be exploited to achieve selective placement and design of biocompatible hydrogels on top of individual transistor devices to integrate the nanoelectronic and biological functionalities onto a single, multifuntional platform. At the molecular level, bio-specific receptors will be sequentially encapsulated into the hydrogel gate to independently encode device selectivity for multiplexed molecular detection with high spatial resolution while reducing Debye screening and non-specific binding, and extending shelf-life. At the cellular level, surface-initiated nanometer-thick hydrogel will serve as photosensitive adhesive to establish robust, minimally-invasive cellular interfaces. Such intimate proximity will enhance coupling of bioelectronic signals with the underlying graphene channel. The ability to pattern and electrically communicate with individual cells enables the rational design of large-scale, addressable transistor/cellular arrays that will provide high-spatiotemporal resolution studies of bioelectrical and biochemical signal propagation at both single cell and biological network levels. The proposed research represents a new approach to achieve seamless integration of biological components with electronics, and is expected to provide a significant improvement over current state-of-the-art techniques by allowing to access elusive biological signals and emerging bioelectric phenomena and providing a substantial increase in data availability and information.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
纳米级场效应晶体管代表了一个独特的平台,用于以前所未有的灵敏度和分辨率实时检测生化和生物电信号,但它们在生理条件下的应用仍然具有挑战性。该项目的目标是开发一种混合传感平台,通过将功能性水凝胶作为界面材料,克服传统场效应晶体管设计的固有局限性。 所提出的传感器设计不仅提供了一个真正的生物相容性微环境,用于长期,可靠的分子和细胞整合,而且还使现有的纳米电子工具集在生理相关条件下的应用成为可能,从而允许对许多生物学重要过程的新见解。拟议的研究将通过在护理点诊断、疾病进展的体外/体内监测和临床脑机接口方面提供新的机会,对公共卫生的许多方面产生积极影响。此外,研究人员将强调先进技术与自然科学之间的跨学科联系,通过暑期实习扩大STEM参与,特别关注当地社区代表性不足的高中生。该提案的总体目标是开发一种由石墨烯场效应晶体管和空间限定的功能性水凝胶组成的混合纳米电子界面,用于在分子和细胞水平上改善生物电子转导。特别是,将利用有针对性的光聚合来实现生物相容性水凝胶在单个晶体管器件顶部的选择性放置和设计,以将纳米电子和生物功能集成到单个多功能平台上。在分子水平上,生物特异性受体将被依次封装到水凝胶门中,以独立地编码具有高空间分辨率的多重分子检测的装置选择性,同时减少德拜筛选和非特异性结合,并延长保质期。在细胞水平,表面引发的纳米厚水凝胶将作为光敏粘合剂,以建立稳健的,微创的细胞界面。 这种紧密接近将增强生物电子信号与底层石墨烯通道的耦合。与单个细胞进行图案化和电通信的能力使得能够合理设计大规模的可寻址晶体管/细胞阵列,其将在单细胞和生物网络水平上提供生物电和生物化学信号传播的高时空分辨率研究。拟议的研究代表了一种实现生物组件与电子器件无缝集成的新方法,预计将提供一个显着的改善,比目前的状态,通过允许访问难以捉摸的生物信号和新兴的生物电现象,并提供大量增加的数据可用性和信息,艺术技术。该奖项反映了NSF的法定使命,并已被认为是值得通过评估支持使用基金会的知识价值和更广泛的影响审查标准。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hydrogel Gate Graphene Field-Effect Transistors as Multiplexed Biosensors
- DOI:10.1021/acs.nanolett.9b00431
- 发表时间:2019-04-01
- 期刊:
- 影响因子:10.8
- 作者:Bay, Hamed Hosseini;Vo, Richard;Jiang, Xiaocheng
- 通讯作者:Jiang, Xiaocheng
Living electronics
生活电子产品
- DOI:10.1007/s12274-019-2570-x
- 发表时间:2019
- 期刊:
- 影响因子:9.9
- 作者:Zhang, Yixin;Hsu, Leo Huan-Hsuan;Jiang, Xiaocheng
- 通讯作者:Jiang, Xiaocheng
Modularized Field-Effect Transistor Biosensors
- DOI:10.1021/acs.nanolett.9b02939
- 发表时间:2019-09-01
- 期刊:
- 影响因子:10.8
- 作者:Dai, Xiaochuan;Vo, Richard;Jiang, Xiaocheng
- 通讯作者:Jiang, Xiaocheng
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaocheng Jiang其他文献
Correction: Degradome sequencing reveals an integrative miRNA-mediated gene interaction network regulating rice seed vigor
- DOI:
10.1186/s12870-022-03700-y - 发表时间:
2022-06-28 - 期刊:
- 影响因子:4.800
- 作者:
Shiqi Zhou;Kerui Huang;Yan Zhou;Yingqian Hu;Yuchao Xiao;Ting Chen;Mengqi Yin;Yan Liu;Mengliang Xu;Xiaocheng Jiang - 通讯作者:
Xiaocheng Jiang
Shen-Qi-Di-Huang Decoction induces autophagy in podocytes to ameliorate membranous nephropathy by suppressing USP14
- DOI:
10.1016/j.jep.2024.119228 - 发表时间:
2025-01-31 - 期刊:
- 影响因子:
- 作者:
Yuxin Wang;Manman Shi;Li Sheng;Yanrong Ke;Hong Zheng;ChaoJun Wang;Xiaocheng Jiang;Zihan Lu;Jian Liu;Yuhua Ma - 通讯作者:
Yuhua Ma
Three-Dimensional Printing of Proteinaceous Structures by Aqueous Solvent-Directed Molecular Assembly
通过水溶剂定向分子组装三维打印蛋白质结构
- DOI:
10.26434/chemrxiv.8206469.v1 - 发表时间:
2019 - 期刊:
- 影响因子:2.5
- 作者:
X. Mu;Yu Wang;Chengchen Guo;Yamin Li;Shengjie Ling;Wenwen Huang;P. Cebe;H. Hsu;F. Ferrari;Xiaocheng Jiang;Qiaobing Xu;A. Balduini;F. Omenetto;D. L. Kaplan - 通讯作者:
D. L. Kaplan
TransGeneSelector: using a transformer approach to mine key genes from small transcriptomic datasets in plant responses to various environments
- DOI:
10.1186/s12864-025-11434-y - 发表时间:
2025-03-17 - 期刊:
- 影响因子:3.700
- 作者:
Kerui Huang;Jianhong Tian;Lei Sun;Haoliang Hu;Xuebin Huang;Shiqi Zhou;Aihua Deng;Zhibo Zhou;Ming Jiang;Guiwu Li;Peng Xie;Yun Wang;Xiaocheng Jiang - 通讯作者:
Xiaocheng Jiang
The ins and outs of microorganism–electrode electron transfer reactions
微生物-电极电子转移反应的来龙去脉
- DOI:
10.1038/s41570-017-0024 - 发表时间:
2017-03-08 - 期刊:
- 影响因子:51.700
- 作者:
Amit Kumar;Leo Huan-Hsuan Hsu;Paul Kavanagh;Frédéric Barrière;Piet N. L. Lens;Laure Lapinsonnière;John H. Lienhard V;Uwe Schröder;Xiaocheng Jiang;Dónal Leech - 通讯作者:
Dónal Leech
Xiaocheng Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
rSC-EXO/NGF/Li-hydrogel调控神经-骨免疫成骨修复股骨头坏死研究
- 批准号:82372392
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
炎症响应性Hydrogel/ECM复合支架负载纳米酶恢复ROS稳态及其诱导瓣膜组织原位再生研究
- 批准号:32371421
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Design and synthesis of hybrid porous hydrogel/metallic nanoparticles materials for applications in heterogeneous catalysis
用于多相催化应用的杂化多孔水凝胶/金属纳米粒子材料的设计和合成
- 批准号:
546585-2020 - 财政年份:2022
- 资助金额:
$ 24.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Developing a hybrid nanoparticle-hydrogel platform for long non-coding RNA delivery in inflammatory bowel disease
开发一种混合纳米颗粒-水凝胶平台,用于炎症性肠病中的长非编码RNA递送
- 批准号:
466679 - 财政年份:2021
- 资助金额:
$ 24.98万 - 项目类别:
Studentship Programs
Design and synthesis of hybrid porous hydrogel/metallic nanoparticles materials for applications in heterogeneous catalysis
用于多相催化应用的杂化多孔水凝胶/金属纳米粒子材料的设计和合成
- 批准号:
546585-2020 - 财政年份:2021
- 资助金额:
$ 24.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Design and synthesis of hybrid porous hydrogel/metallic nanoparticles materials for applications in heterogeneous catalysis
用于多相催化应用的杂化多孔水凝胶/金属纳米粒子材料的设计和合成
- 批准号:
546585-2020 - 财政年份:2020
- 资助金额:
$ 24.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Hybrid Hydrogel Biomaterials Comprising Clickable Decellularized Extracellular Matrix for Engineering Dynamic 3D Models of Fibrosis
包含可点击脱细胞细胞外基质的混合水凝胶生物材料,用于工程纤维化动态 3D 模型
- 批准号:
10224335 - 财政年份:2020
- 资助金额:
$ 24.98万 - 项目类别:
Hybrid Hydrogel Biomaterials Comprising Clickable Decellularized Extracellular Matrix for Engineering Dynamic 3D Models of Fibrosis
包含可点击脱细胞细胞外基质的混合水凝胶生物材料,用于工程纤维化动态 3D 模型
- 批准号:
10026363 - 财政年份:2020
- 资助金额:
$ 24.98万 - 项目类别:
Hybrid Hydrogel Biomaterials Comprising Clickable Decellularized Extracellular Matrix for Engineering Dynamic 3D Models of Fibrosis
包含可点击脱细胞细胞外基质的混合水凝胶生物材料,用于工程纤维化动态 3D 模型
- 批准号:
10454853 - 财政年份:2020
- 资助金额:
$ 24.98万 - 项目类别:
Hybrid Hydrogel Biomaterials Comprising Clickable Decellularized Extracellular Matrix for Engineering Dynamic 3D Models of Fibrosis
包含可点击脱细胞细胞外基质的混合水凝胶生物材料,用于工程纤维化动态 3D 模型
- 批准号:
10661783 - 财政年份:2020
- 资助金额:
$ 24.98万 - 项目类别:
Design of hybrid porous hydrogel/metallic nanoparticles materials for applications in heterogenous catalysis and process intensifications in chemical engineering
杂化多孔水凝胶/金属纳米粒子材料的设计,用于化学工程中的多相催化和过程强化
- 批准号:
529687-2018 - 财政年份:2018
- 资助金额:
$ 24.98万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Design of hybrid porous hydrogel/metallic nanoparticles materials for applications in heterogenous catalysis and process intensification in chemical engineering
杂化多孔水凝胶/金属纳米颗粒材料的设计,用于化学工程中的多相催化和过程强化
- 批准号:
510977-2017 - 财政年份:2017
- 资助金额:
$ 24.98万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's