Collaborative Research: Intermittency in Multi-Phase Flows in 2D and 3D Porous Media: Coordinated Experiments and Simulations
合作研究:2D 和 3D 多孔介质中多相流的间歇性:协调实验和模拟
基本信息
- 批准号:1804089
- 负责人:
- 金额:$ 6.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2019-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding how fluids move through porous media is of great importance. Much of the water we rely on comes from groundwater which passes through soils. For a significant part of our energy needs we must extract oil and gas from the subsurface. In addition, some of the most promising proposed methods to reduce greenhouse gas emissions to the atmosphere rely on injecting CO2 back into porous media in the subsurface, where it can be trapped forever. Similarly, many industrial processes that provide essential products or clean our air and water supplies rely on passing fluids through engineered porous media. Virtually all of these flows are complex, because they can involve multiple fluids interacting with highly heterogeneous porous geometries. While scientists have a reasonable understanding of how a single fluid might move through such systems, when two different fluids are involved our predictive skills deteriorate significantly. And yet, understanding and better predicting these flows will enhance our ability to improve access to clean water, extract and use energy resources more efficiently, protect our future environment and design more effective industrial processes. This project focuses on such complex flows. By combining state of the art experiments and theory, the investigators will develop and enhance our current understanding of multiphase flows through porous media and develop novel methods and models to predict their complex behaviors. Graduate and undergraduate students will receive training as part of this research effort, and a high resolution, high fidelity visual teaching experience on environmental fluid mechanics will be developed in collaboration with Notre Dame's Digital Visualization Theater and shared openly with other institutions.A coordinated experimental and numerical program will be undertaken to advance understanding of and ability to model transport in multi-phase flows in 2D and 3D porous media. Particle tracking in both single- and multi-phase flow in 2D and 3D porous models across viscous and inertial flow regimes will be conducted leveraging a novel refractive-index-matching approach. Additionally, to enable a broader and more efficient sweep of the parameter space, a complementary series of cutting edge Lattice Boltzmann simulations, validated with experimental data, will be conducted. These innovative experiments and simulations, tightly coupled to state-of-the-art transport modeling, will validate and advance modeling strategies, transforming our understanding of intermittency in single- and multi-phase flows in 2D and 3D porous media and improving predictions of transport processes at the macro-scale for a range of engineering and environmental applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解流体如何在多孔介质中流动是非常重要的。 我们所依赖的大部分水来自穿过土壤的地下水。 对于我们能源需求的重要部分,我们必须从地下提取石油和天然气。 此外,一些最有希望的减少温室气体排放到大气中的方法依赖于将二氧化碳注入地下的多孔介质中,在那里它可以永远被捕获。 同样,许多提供基本产品或清洁空气和水供应的工业过程依赖于使流体通过工程多孔介质。实际上,所有这些流动都是复杂的,因为它们可能涉及与高度不均匀的多孔几何形状相互作用的多种流体。虽然科学家对单一流体如何在这样的系统中移动有合理的理解,但当涉及两种不同的流体时,我们的预测能力会显着下降。然而,了解和更好地预测这些流动将提高我们获得清洁水的能力,更有效地提取和使用能源资源,保护我们未来的环境并设计更有效的工业流程。本项目的重点是这种复杂的流动。通过结合最先进的实验和理论,研究人员将发展和加强我们目前对多孔介质多相流的理解,并开发新的方法和模型来预测其复杂的行为。 研究生和本科生将接受培训,作为这项研究工作的一部分,和高分辨率,环境流体力学的高保真可视化教学经验将与圣母大学的数字可视化剧院合作开发,并与其他机构公开分享。二维和三维多孔介质中的相流。 将利用一种新的折射率匹配方法,在2D和3D多孔模型中跨粘性和惯性流态的单相和多相流中进行颗粒跟踪。此外,为了能够更广泛和更有效地扫描参数空间,将进行一系列补充的前沿格子玻尔兹曼模拟,并通过实验数据进行验证。这些创新的实验和模拟与最先进的运输建模紧密结合,将验证和推进建模策略,改变我们对二维和三维多孔介质中单相和多相流动的不稳定性的理解,并改善宏观上输运过程的预测。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的学术价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Farzan Kazemifar其他文献
A novel microfluidic approach to quantify pore-scale mineral dissolution in porous media
- DOI:
10.1038/s41598-025-90429-x - 发表时间:
2025-02-21 - 期刊:
- 影响因子:3.900
- 作者:
Rafid Musabbir Rahman;Elliott Niemur;Gianluca Blois;Farzan Kazemifar;Myeongsub Kim;Yaofa Li - 通讯作者:
Yaofa Li
Farzan Kazemifar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Farzan Kazemifar', 18)}}的其他基金
Collaborative Research: Intermittency in Multi-Phase Flows in 2D and 3D Porous Media: Coordinated Experiments and Simulations
合作研究:2D 和 3D 多孔介质中多相流的间歇性:协调实验和模拟
- 批准号:
1953352 - 财政年份:2019
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345581 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345582 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
- 批准号:
2345583 - 财政年份:2024
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Collaborative Research: Intermittency in Multi-Phase Flows in 2D and 3D Porous Media: Coordinated Experiments and Simulations
合作研究:2D 和 3D 多孔介质中多相流的间歇性:协调实验和模拟
- 批准号:
1953352 - 财政年份:2019
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Collaborative Research: Intermittency in Multi-Phase Flows in 2D and 3D Porous Media: Coordinated Experiments and Simulations
合作研究:2D 和 3D 多孔介质中多相流的间歇性:协调实验和模拟
- 批准号:
1803989 - 财政年份:2018
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Collaborative Research: The role of microphysical processes and turbulence intermittency in droplet coalescence in warm cumulus clouds
合作研究:微物理过程和湍流间歇性在暖积云中液滴合并中的作用
- 批准号:
1435953 - 财政年份:2014
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Collaborative Research: The Effects of Hydrodynamic and Granular Controls on Bed Load Flux Intermittency: Application to Steep Mountain Streams
合作研究:水动力和颗粒控制对床荷通量间歇性的影响:在陡峭山溪中的应用
- 批准号:
1419073 - 财政年份:2014
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Collaborative Research: The Role of Microphysical Processes and Turbulence Intermittency in Droplet Coalescence in Warm Cumulus Clouds
合作研究:微物理过程和湍流间歇性在暖积云中液滴聚结中的作用
- 批准号:
1436100 - 财政年份:2014
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Collaborative Research: The Effects of Hydrodynamic and Granular Controls on Bed Load Flux Intermittency: Application to Steep Mountain Streams
合作研究:水动力和颗粒控制对床荷通量间歇性的影响:在陡峭山溪中的应用
- 批准号:
1224943 - 财政年份:2012
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant
Collaborative Research: The Effects of Hydrodynamic and Granular Controls on Bed Load Flux Intermittency: Application to Steep Mountain Streams
合作研究:水动力和颗粒控制对床荷通量间歇性的影响:在陡峭山溪中的应用
- 批准号:
1226404 - 财政年份:2012
- 资助金额:
$ 6.64万 - 项目类别:
Standard Grant