Predictive Modeling of Multi-Solute Adsorption Equilibrium based on Adsorbed Solution Theories

基于吸附溶液理论的多溶质吸附平衡预测模型

基本信息

  • 批准号:
    1804708
  • 负责人:
  • 金额:
    $ 35.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

The occurrence of organic contaminants (OCs) in the environment is one of the greatest environmental challenges facing the Nation. Different remedial techniques are used to cost-effectively remove OCs from contaminated water. However, little is known about the adsorption properties and methods of these techniques over a broad range of solution conditions. These knowledge gaps limit our ability to design adsorption systems to remove these pollutants, as it is time-consuming and difficult to experimentally obtain data for the vast number of OCs in drinking water and wastewater. The objective of this research is to develop accurate predictive models that can predict adsorption of a wide range of OC mixtures. Removal of OCs from drinking water will directly protect human health, and removal of OCs from wastewater will protect the environment and enable water reuse. The research efforts will be coupled with an educational and outreach plan designed to: 1) broaden participation from underrepresented groups in research; 2) integrate the latest research findings with fundamental environmental concepts for broader dissemination to college students; and 3) train future engineers and increase awareness within communities about OCs.The proposed research aims to develop predictive models for multisolute adsorption equilibria of a suite of OCs by two common adsorbents in either the absence or the presence of natural organic matter (NOM). The adsorption isotherms of multisolute mixtures of 2-6 aromatic solutes will be obtained for two representative adsorbents in the presence or absence of six representative NOM mixtures. The isotherm data will be used to model adsorbed phase activity coefficients of bisolute mixtures to establish poly-parameter linear free energy relationships (pp-LFERs) for the activity coefficients at infinite dilution. Next, predictive models for multisolute adsorption will be developed based on a combination of pp-LFERs and Real Adsorbed Solution Theory. Finally, NOM will be treated as one or two equivalent background compounds, and predictive models for multisolute adsorption in the presence of the six NOMs mixtures will be established. This new predictive modeling approach will give environmental engineers a tool to study multisolute adsorption more easily and overcome the limits of studying single-solute adsorption or ideal mixtures without consideration of solute interactions. Developing predictive models for multisolute adsorption contributes to a major advance in the application of adsorption to OC removal. In addition, multiple approaches will be employed in the educational and outreach plan, including involving underrepresented graduate, undergraduate, and high school students in research, integrating project findings into the environmental curriculum at Case Western Reserve University, and broadly disseminating findings to communities with diverse backgrounds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
环境中有机污染物(OCs)的出现是国家面临的最大环境挑战之一。不同的补救技术用于经济有效地从受污染的水中去除OCs。然而,人们对这些技术在广泛的溶液条件下的吸附特性和方法知之甚少。这些知识差距限制了我们设计吸附系统去除这些污染物的能力,因为通过实验获得饮用水和废水中大量OCs的数据既耗时又困难。本研究的目的是建立准确的预测模型,以预测各种OC混合物的吸附。从饮用水中去除OCs将直接保护人类健康,从废水中去除OCs将保护环境并实现水的再利用。研究工作将与一项教育和推广计划相结合,旨在:1)扩大代表性不足群体对研究的参与;2)将最新的研究成果与基本的环境理念相结合,在大学生中广泛传播;3)培训未来的工程师,提高社区对OCs的认识。本研究旨在建立两种常见吸附剂在天然有机物(NOM)存在或不存在的情况下对一组有机碳的多溶质吸附平衡的预测模型。将得到两种代表性吸附剂在存在或不存在六种代表性NOM混合物的情况下,2-6芳香溶质多溶质混合物的吸附等温线。等温线数据将用于模拟溶质混合物的吸附相活度系数,以建立无限稀释时活度系数的多参数线性自由能关系(pp-LFERs)。下一步,将基于pp- lfer和Real吸附溶液理论的结合,开发多溶质吸附的预测模型。最后,将NOM视为一种或两种等效的背景化合物,并建立六种NOM混合物存在时多溶质吸附的预测模型。这种新的预测建模方法将为环境工程师提供一种更容易研究多溶质吸附的工具,并克服研究单溶质吸附或理想混合物而不考虑溶质相互作用的限制。多溶质吸附预测模型的建立是多溶质吸附在除OC中的应用取得重大进展。此外,教育和推广计划将采用多种方法,包括让代表性不足的研究生、本科生和高中生参与研究,将项目结果整合到凯斯西储大学的环境课程中,并向不同背景的社区广泛传播研究结果。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular image-convolutional neural network (CNN) assisted QSAR models for predicting contaminant reactivity toward OH radicals: Transfer learning, data augmentation and model interpretation
  • DOI:
    10.1016/j.cej.2020.127998
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Shifa Zhong;Jiajie Hu;X. Yu;Huichun Zhang
  • 通讯作者:
    Shifa Zhong;Jiajie Hu;X. Yu;Huichun Zhang
Machine Learning: New Ideas and Tools in Environmental Science and Engineering
  • DOI:
    10.1021/acs.est.1c01339
  • 发表时间:
    2021-08-17
  • 期刊:
  • 影响因子:
    11.4
  • 作者:
    Zhong, Shifa;Zhang, Kai;Zhang, Huichun
  • 通讯作者:
    Zhang, Huichun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huichun Zhang其他文献

Transition metal-free, iodide-mediated domino carbonylation–benzylation of benzyl chlorides with arylboronic acids under ambient pressure of carbon monoxide
一氧化碳环境压力下,无过渡金属、碘化物介导的多米诺羰基化-苄基氯与芳基硼酸的苄基化
  • DOI:
    10.1039/c6gc00017g
  • 发表时间:
    2016-05
  • 期刊:
  • 影响因子:
    9.8
  • 作者:
    Xin Zhang;Huichun Zhang;Qian Zhao;Wei Han
  • 通讯作者:
    Wei Han
Predicting sorption of diverse organic compounds in soil-water systems: Meta-analysis, machine learning modeling, and global soil mapping
预测土壤-水系统中各种有机化合物的吸附:荟萃分析、机器学习建模和全球土壤制图
  • DOI:
    10.1016/j.jhazmat.2025.137480
  • 发表时间:
    2025-05-05
  • 期刊:
  • 影响因子:
    11.300
  • 作者:
    Jiachun Sun;Kai Zhang;Huichun Zhang
  • 通讯作者:
    Huichun Zhang
Machine learning approaches for monitoring environmental metal pollutants: Recent advances in source apportionment, detection, quantification, and risk assessment
用于监测环境金属污染物的机器学习方法:源解析、检测、定量和风险评估的最新进展
  • DOI:
    10.1016/j.trac.2024.117980
  • 发表时间:
    2024-11-01
  • 期刊:
  • 影响因子:
    12.000
  • 作者:
    François Nkinahamira;Anqi Feng;Lijie Zhang;Hongwei Rong;Pamphile Ndagijimana;Dabin Guo;Baihui Cui;Huichun Zhang
  • 通讯作者:
    Huichun Zhang
Comparative research on nonlinear growth curve models for describing growth of Arabidopsis thaliana rosette leaves
描述拟南芥莲座叶生长的非线性生长曲线模型的比较研究
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Xiang Jiao;Huichun Zhang;Jiaqiang Zheng
  • 通讯作者:
    Jiaqiang Zheng
Integrating Bioinformatics To Identify Potential Cytokines ALPL /TNAP In Children With Spastic Cerebral Palsy
整合生物信息学识别痉挛性脑瘫儿童中潜在的细胞因子 ALPL /TNAP
  • DOI:
    10.21203/rs.3.rs-1080264/v1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Xiaokun Wang;Chao Gao;Hequan Zhong;Xian;Rui Qiao;Huichun Zhang;Dongmei Yang;Yang Gao;Bing Li
  • 通讯作者:
    Bing Li

Huichun Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huichun Zhang', 18)}}的其他基金

D3SC: CDS&E: Collaborative Research: Machine Learning Modeling for the Reactivity of Organic Contaminants in Engineered and Natural Environments
D3SC:CDS
  • 批准号:
    2105005
  • 财政年份:
    2021
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Standard Grant
Synthetic Manganese Oxides for Oxidative and Catalytic Removal of Contaminants of Emerging Concern
用于氧化和催化去除新兴污染物的合成锰氧化物
  • 批准号:
    1808406
  • 财政年份:
    2018
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Standard Grant
Reduction of Nitrogen-Oxygen Containing Contaminants (NOCs) in Aquatic Environments
减少水生环境中的氮氧污染物 (NOC)
  • 批准号:
    1762686
  • 财政年份:
    2017
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Standard Grant
Impact of Interactions between Metal Oxides to Redox Reactivity of Iron and Manganese Oxides
金属氧化物之间的相互作用对铁和锰氧化物氧化还原反应性的影响
  • 批准号:
    1762691
  • 财政年份:
    2017
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Standard Grant
Reduction of Nitrogen-Oxygen Containing Contaminants (NOCs) in Aquatic Environments
减少水生环境中的氮氧污染物 (NOC)
  • 批准号:
    1507981
  • 财政年份:
    2015
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Standard Grant
Impact of Interactions between Metal Oxides to Redox Reactivity of Iron and Manganese Oxides
金属氧化物之间的相互作用对铁和锰氧化物氧化还原反应性的影响
  • 批准号:
    1236517
  • 财政年份:
    2012
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Standard Grant
BRIGE: Redox Noninnocent Ligands - Application to the Reductive Transformation of Veterinary Pharmaceuticals Containing Carbon-Nitrogen Double Bonds
BRIGE:氧化还原非无害配体——在含碳氮双键兽药还原转化中的应用
  • 批准号:
    1125713
  • 财政年份:
    2011
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Standard Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Harnessing the Data Revolution to Enable Predictive Multi-scale Modeling across STEM
利用数据革命实现跨 STEM 的预测性多尺度建模
  • 批准号:
    2152014
  • 财政年份:
    2022
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Standard Grant
Frontera Travel Grant: Enhanced Atomistic Simulations for Predictive Multi-Scale Modeling Safety Pharmacology Pipeline
Frontera 旅行补助金:用于预测多尺度建模安全药理学管道的增强原子模拟
  • 批准号:
    2032486
  • 财政年份:
    2020
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Standard Grant
Scalable, real-time predictive modeling methods using multi-rate physiological time series data for the prediction of disease onset
使用多速率生理时间序列数据预测疾病发作的可扩展实时预测建模方法
  • 批准号:
    DDG-2017-00053
  • 财政年份:
    2018
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Discovery Development Grant
Scalable, real-time predictive modeling methods using multi-rate physiological time series data for the prediction of disease onset
使用多速率生理时间序列数据预测疾病发作的可扩展实时预测建模方法
  • 批准号:
    DDG-2017-00053
  • 财政年份:
    2017
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Discovery Development Grant
Real-time predictive modeling methods using multi-rate physiological time series data for the prediction of disease onset
使用多速率生理时间序列数据预测疾病发作的实时预测建模方法
  • 批准号:
    341623-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time predictive modeling methods using multi-rate physiological time series data for the prediction of disease onset
使用多速率生理时间序列数据预测疾病发作的实时预测建模方法
  • 批准号:
    341623-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time predictive modeling methods using multi-rate physiological time series data for the prediction of disease onset
使用多速率生理时间序列数据预测疾病发作的实时预测建模方法
  • 批准号:
    341623-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time predictive modeling methods using multi-rate physiological time series data for the prediction of disease onset
使用多速率生理时间序列数据预测疾病发作的实时预测建模方法
  • 批准号:
    341623-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Discovery Grants Program - Individual
Real-time predictive modeling methods using multi-rate physiological time series data for the prediction of disease onset
使用多速率生理时间序列数据预测疾病发作的实时预测建模方法
  • 批准号:
    341623-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Discovery Grants Program - Individual
III: Small: Simultaneous Decomposition and Predictive Modeling on Large Multi-Modal Data
III:小型:大型多模态数据的同时分解和预测建模
  • 批准号:
    1017614
  • 财政年份:
    2010
  • 资助金额:
    $ 35.85万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了