Precision Measurement of 1S-2S Interval in Positronium

正电子1S-2S间隔的精确测量

基本信息

  • 批准号:
    1807054
  • 负责人:
  • 金额:
    $ 64.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-15 至 2023-03-31
  • 项目状态:
    已结题

项目摘要

This project will improve the accuracy of positronium (Ps) atom spectroscopy. Spectroscopy is important because the colors of light (or "spectrum") absorbed by atoms is a unique fingerprint that is useful for chemical identification in a broad range of applications found in medicine, defense, and industry. Spectroscopy can also reveal details about sub-atomic particles and their fundamental interactions. Ps is a unique atom for this purpose. Ps is formed by an electron bound with an anti-electron (positron). Because Ps does not contain any protons or neutrons, spectroscopy of Ps atoms is an excellent test of bound-state quantum electrodynamics, a cornerstone theory for modern atomic physics. This project will thus promote the progress of science. This project will also help expand the nation's high technology work force by training students from diverse backgrounds to develop and implement high precision spectroscopy techniques.The purely leptonic positronium (Ps) atom is uniquely well-suited for testing bound-state quantum electrodynamics (QED). High accuracy Ps spectroscopy at the few parts per trillion level will provide background information that can be used to extract non-QED physics out of precision atomic measurements with heavier leptons and hadrons. In this way, Ps spectroscopy can shed light on the proton charge radius puzzle. It can also help constrain higher level recoil effect corrections in muonium. The previous precision measurement of the Ps 1S-2S interval, 1,233,607,216.4 +/- 3.2 MHz, performed by the coPI and S. Chu has stood for 25 years. The uncertainty in this measurement came from positronium atoms spending too little time in the laser beam (transit time broadening), atoms moving too fast (second-order Doppler shift), laser intensity too high (AC Stark shift), and metrology limited at the ~1 MHz level. This project will implement several new techniques to improve accuracy and precision. A position-sensitive time-of-flight detector will record the trajectory and speed of every detected atom as it passes through a larger laser beam profile, and thereby reduce the uncertainty due to second-order Doppler shifts, AC Stark Shifts, and transit-time broadening. A frequency-comb and a frequency-beat technique will be used to monitor the instantaneous laser frequency as positronium atoms transit the excitation beam. These innovations should reduce the uncertainty in the measurement by a factor of 300, with the goal of reaching a 10 kHz uncertainty. This work will train graduate students in a combination of atomic physics, positron science, laser spectroscopy, and metrology. This training will benefit the students as well as the Nation by providing highly skilled Ph.D.'s for the scientific workforce. UCR is a Department of Education Designated Hispanic Serving Institution (HSI) with 30% of Physics majors and 15% of graduate students from under-represented ethnic minority groups. Several undergraduate researchers and a high school teacher will also be involved in these experiments, and this will help to attract more participants to STEM disciplines.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将提高正电子素(Ps)原子光谱的准确性。光谱学很重要,因为原子吸收的光的颜色(或“光谱”)是一种独特的指纹,对于医学、国防和工业中广泛应用的化学识别非常有用。光谱学还可以揭示亚原子粒子及其基本相互作用的细节。 Ps是用于此目的的唯一原子。 Ps是由一个电子与一个反电子(正电子)结合形成的。 由于Ps不包含任何质子或中子,Ps原子的光谱学是对束缚态量子电动力学(现代原子物理学的基石理论)的一个很好的测试。 因此,该项目将促进科学的进步。 该项目还将通过培训来自不同背景的学生开发和实施高精度光谱技术来帮助扩大国家的高科技劳动力。纯轻子正电子素(Ps)原子是唯一非常适合测试束缚态量子电动力学(QED)的原子。 万亿分之几的高精度Ps光谱学将提供背景信息,可用于从较重轻子和强子的精确原子测量中提取非QED物理。 这样一来,Ps光谱学就可以揭示质子电荷半径之谜。 它还可以帮助限制μ介子中更高水平的反冲效应修正。先前由coPI和S.朱棣文已经站了25年。 测量中的不确定性来自正电子素原子在激光束中花费的时间太少(渡越时间加宽),原子移动太快(二阶多普勒频移),激光强度太高(AC斯塔克频移),以及计量限制在~1 MHz水平。 该项目将采用几种新技术来提高准确度和精确度。位置敏感的飞行时间探测器将记录每个被探测原子通过较大激光束轮廓时的轨迹和速度,从而减少由于二阶多普勒频移、AC斯塔克频移和渡越时间加宽而引起的不确定性。采用频率梳和拍频技术,监测电子偶素原子通过激发光束时的瞬时激光频率。 这些创新应将测量的不确定性降低300倍,目标是达到10 kHz的不确定性。 这项工作将培养研究生在原子物理学,正电子科学,激光光谱学和计量学的组合。这种培训将有利于学生以及国家提供高技能的博士学位。是为科学工作者准备的UCR是教育部指定的西班牙裔服务机构(HSI),30%的物理专业学生和15%的研究生来自代表性不足的少数民族群体。几位本科生研究人员和一位高中教师也将参与这些实验,这将有助于吸引更多的参与者进入STEM学科。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conditions for obtaining positronium Bose–Einstein condensation in a micron-sized cavity
在微米级空腔中获得正电子玻色爱因斯坦凝聚的条件
  • DOI:
    10.1140/epjd/s10053-022-00427-1
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asaro, Marcus X.;Herrera, Steven;Fuentes-Garcia, Melina;Cecchini, Gabriel G.;Membreno, Erick E.;Greaves, Rod G.;Mills, Jr., Allen P.
  • 通讯作者:
    Mills, Jr., Allen P.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harry Tom其他文献

Harry Tom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harry Tom', 18)}}的其他基金

Optical Properties of Cold Dense Electron-Positron Plasmas
冷致密电子-正电子等离子体的光学性质
  • 批准号:
    2208085
  • 财政年份:
    2022
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Continuing Grant
Precision Measurement of the 1S-2S Interval in Positronium
正电子1S-2S间隔的精确测量
  • 批准号:
    2110626
  • 财政年份:
    2021
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Standard Grant
MRI: Development of an Instrument for Ultra-High Resolution 1S-2S Spectrosopy of Exotic Hydrogenic Atoms
MRI:开发一种用于奇异氢原子超高分辨率 1S-2S 光谱分析的仪器
  • 批准号:
    1532300
  • 财政年份:
    2015
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Standard Grant
1S-2S Spectroscopy of Positronium
正电子的 1S-2S 光谱
  • 批准号:
    1404576
  • 财政年份:
    2014
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Continuing Grant
MRI: Development of Instrumentation for Laser-Cooling and Precision Spectroscopy of Positronium Atoms, Molecules and Condensates
MRI:开发正电子原子、分子和凝聚物的激光冷却和精密光谱分析仪器
  • 批准号:
    1040590
  • 财政年份:
    2010
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Standard Grant
Optical Studies of Spin Dynamics, Interfacial Magnetism, and Barrier Heights in MgO Heterostructures and Devices
MgO 异质结构和器件中自旋动力学、界面磁性和势垒高度的光学研究
  • 批准号:
    0706681
  • 财政年份:
    2007
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Continuing Grant
Study of Low Frequency Collective Modes of Hydrogen Bonded Liquids in Bulk Mixtures and at the Liquid/Solid Interface Using Time Domain THz and THz-SHG Spectroscopy
使用时域 THz 和 THz-SHG 光谱研究散装混合物中和液/固界面处氢键液体的低频集体模式
  • 批准号:
    0111728
  • 财政年份:
    2001
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Continuing Grant
Time-Resolved Studies of Coherent Surface Optical Phonons and Low Frequency Adsorbate-Substrate Vibrations
相干表面光学声子和低频吸附基质振动的时间分辨研究
  • 批准号:
    9707143
  • 财政年份:
    1997
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Continuing Grant
Graduate Research Training Program in Enviromental Mathematics & Physical Science Emphasizing Physics of Interfaces and Transport
环境数学研究生研究培训计划
  • 批准号:
    9554506
  • 财政年份:
    1995
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Continuing Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Studentship
Direct Measurement of Interfacial Energies in Ceramics
陶瓷界面能的直接测量
  • 批准号:
    2414106
  • 财政年份:
    2024
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Continuing Grant
CAREER: Measurement of Photochemical Mechanisms, Rates, and Pathways of Radical Formation in Complex Organic Compounds
职业:测量复杂有机化合物中自由基形成的光化学机制、速率和途径
  • 批准号:
    2340926
  • 财政年份:
    2024
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Continuing Grant
Measurement, analysis and application of advanced lubricant materials
先进润滑材料的测量、分析与应用
  • 批准号:
    10089539
  • 财政年份:
    2024
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Collaborative R&D
Preparation for the Deep Underground Neutrino Experiment and Measurement of Pion-Argon Cross-sections
深部地下中微子实验准备及π-氩截面测量
  • 批准号:
    2902765
  • 财政年份:
    2024
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Studentship
New measurement of the weak mixing angle
弱混合角的新测量
  • 批准号:
    2908000
  • 财政年份:
    2024
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Studentship
SBIR Phase II: Development of a Novel Measurement Technology to Enable Longitudinal Multiomic Investigations of the Gut Microbiome
SBIR 第二阶段:开发新型测量技术以实现肠道微生物组的纵向多组学研究
  • 批准号:
    2314685
  • 财政年份:
    2024
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Cooperative Agreement
Travel: Student Travel Grant for the 2024 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems
旅费:2024 年 ACM SIGMETRICS 国际计算机系统测量和建模会议学生旅费补助
  • 批准号:
    2412676
  • 财政年份:
    2024
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Standard Grant
Spin Echo | Application of novel shimming processes for NMR measurement
旋转回声|
  • 批准号:
    10089152
  • 财政年份:
    2024
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Collaborative R&D
Energy measurement module validation for hydrogen/natural gas blends
氢气/天然气混合物的能量测量模块验证
  • 批准号:
    10089313
  • 财政年份:
    2024
  • 资助金额:
    $ 64.83万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了