Interactive Microscopy of Hybrid Scattering Structures

混合散射结构的交互式显微镜

基本信息

  • 批准号:
    1807233
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical AbstractThe goal of this project is to understand how electrical current flows in small devices where it encounters obstacles whose size is on the order of the size of a single atom. This is important for miniaturizing electrical devices in order to make computers faster and more energy efficient, but it also creates new problems as the devices begin to reach sizes comparable to the distance between constituent atoms. In this size regime tiny defects such as a single misplaced atom - which might not have mattered in the past - suddenly can become very significant. The importance of this project is that it helps to clarify precisely how different atomic-scale objects affect electrical current in small devices, thus helping technology to be successfully miniaturized to the greatest extent possible. The difficulty here is the need to image atomic-scale structure inside actual operating devices to determine the cause-and-effect relationship between atomic-scale structure and device performance. This is accomplished using a scanning tunneling microscope that can see single atoms and also image electrons as they flow around the smallest possible obstacles, like water in a stream, according to the rules of quantum mechanics. Other types of microscopes are used that involve focused electron beams and helium ion beams to intentionally create atomic-scale structures that are not naturally occurring and thus intentionally manipulate the structure of electrical devices over the smallest distances possible. The broader impacts of this project lie in its strong education and outreach components and the fact that it provides high-level scientific training to graduate students, undergraduates, and high school students, preparing them for careers in STEM fields. Outreach efforts are performed at all levels by the investigators and team members and include creation of educational materials on nanoscience and technology for the Berkeley School/University Partnership Outreach Implementation Plan, as well as participation in the Bay Area Science in Schools program. Underrepresented minority students will be offered 5-week internships in the laboratories through the Summer Math and Science Honors Academy program at Berkeley, as well as mentoring opportunities through partnership with the UC Leadership Excellence through Advanced Degrees Program.Technical AbstractThe main goal of this project is to better understand how electrons in 2D materials interact with different structures at the atomic-scale under both equilibrium (i.e., zero transport current) and nonequilibrium (non-zero transport current) conditions. Conventional fabrication and imaging techniques are unable to access the atomic-scale for operational devices and so a gap has opened up in the understanding of how atomic-scale structures in 2D materials alter device functionality. This project will help to fill that gap by developing new techniques to synthesize atomically-precise structures in 2D devices and also to image them at the atomic-scale during device operation. A central question that is addressed is how the equilibrium electronic properties of microscopic scattering structures lead to their nonequilibrium response under high current density and differing device conditions. Specific objectives include the control and visualization of this behavior for point scatterers, quantum dots, and 1D superlattices at the surfaces of single-layer graphene field-effect transistor (FET) devices. Novel transmission electron microscopy (TEM), scanning tunneling microscopy (STM), and focused ion beam based synthesis techniques are used to modify boron nitride substrates with unprecedented spatial precision to engineer the electronic properties of graphene FET capping layers. This project combines the principal investigators' TEM, device fabrication, and scanned probe microscopy expertise to explore a unique set of nanoscale experimental systems. The intellectual merit of this project lies in the fact that it allows access to physical regimes that have never been explored, including the nonequilibrium properties of different atomic scale scatterers such as Coulomb impurities, resonant scatterers, and sp3 defects that break sublattice symmetry. The smallest possible atomically-precise quantum dots are explored in graphene, creating opportunity to visualize new types of edge-state behavior as well as electron lensing. Quantum dot wavefunctions are imaged with unprecedented resolution, enabling long-standing theoretical predictions to be tested. Defect behavior is studied in systems with engineered electrical anisotropy, a new frontier in 2D materials research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目的目标是了解电流如何在遇到单个原子大小的障碍物的小型设备中流动。这对于电子设备的简化是很重要的,以便使计算机更快,更节能,但随着设备开始达到与组成原子之间的距离相当的尺寸,它也产生了新的问题。在这种尺寸范围内,微小的缺陷,如单个错位的原子--在过去可能并不重要--突然变得非常重要。该项目的重要性在于,它有助于精确地阐明不同原子尺度的物体如何影响小型设备中的电流,从而帮助技术成功地最大限度地小型化。这里的困难在于需要对实际操作设备内部的原子尺度结构进行成像,以确定原子尺度结构与设备性能之间的因果关系。这是使用扫描隧道显微镜完成的,它可以看到单个原子,也可以根据量子力学的规则,在电子绕过最小的障碍物(如溪流中的水)时成像。使用其他类型的显微镜,其涉及聚焦电子束和氦离子束,以有意地创建非自然发生的原子尺度结构,从而有意地在尽可能小的距离上操纵电气设备的结构。该项目更广泛的影响在于其强大的教育和推广组成部分,以及它为研究生,本科生和高中生提供高水平的科学培训,为他们在STEM领域的职业生涯做好准备。外展工作在各级进行的调查人员和团队成员,包括创建教育材料的纳米科学和技术的伯克利学校/大学合作伙伴关系外展实施计划,以及在湾区科学参与学校计划。代表性不足的少数民族学生将通过伯克利的夏季数学和科学荣誉学院项目在实验室进行为期5周的实习,技术摘要本项目的主要目标是更好地了解二维材料中的电子如何与不同结构在原子尺度上相互作用,也就是说,零传输电流)和非平衡(非零传输电流)条件。传统的制造和成像技术无法访问操作设备的原子尺度,因此在理解2D材料中的原子尺度结构如何改变设备功能方面存在差距。该项目将通过开发新技术来填补这一空白,以在2D设备中合成原子级精确的结构,并在设备运行期间以原子级对其进行成像。解决的一个中心问题是如何平衡的微观散射结构的电子性质导致其在高电流密度和不同的设备条件下的非平衡响应。具体目标包括控制和可视化单层石墨烯场效应晶体管(FET)器件表面的点散射体,量子点和1D超晶格的这种行为。新型透射电子显微镜(TEM)、扫描隧道显微镜(STM)和基于聚焦离子束的合成技术用于以前所未有的空间精度修饰氮化硼衬底,以设计石墨烯FET覆盖层的电子特性。该项目结合了主要研究人员的TEM,设备制造和扫描探针显微镜的专业知识,探索一套独特的纳米级实验系统。该项目的智力价值在于,它允许访问从未被探索过的物理机制,包括不同原子尺度散射体的非平衡特性,如库仑杂质,共振散射体和破坏亚晶格对称性的sp3缺陷。在石墨烯中探索了最小的原子级精确量子点,为可视化新型边缘态行为和电子透镜创造了机会。量子点波函数以前所未有的分辨率成像,使长期存在的理论预测得到验证。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(36)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tunable electronic structure in gallium chalcogenide van der Waals compounds
镓硫族化物范德华化合物中的可调谐电子结构
  • DOI:
    10.1103/physrevb.100.165112
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Shevitski, Brian;Ulstrup, Søren;Koch, Roland J.;Cai, Hui;Tongay, Sefaattin;Moreschini, Luca;Jozwiak, Chris;Bostwick, Aaron;Zettl, Alex;Rotenberg, Eli
  • 通讯作者:
    Rotenberg, Eli
Imaging two-dimensional generalized Wigner crystals
  • DOI:
    10.1038/s41586-021-03874-9
  • 发表时间:
    2021-09-30
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    Li, Hongyuan;Li, Shaowei;Wang, Feng
  • 通讯作者:
    Wang, Feng
Catalyst‐Free and Morphology‐Controlled Growth of 2D Perovskite Nanowires for Polarized Light Detection
  • DOI:
    10.1002/adom.201900039
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Debjit Ghoshal;Tianmeng Wang;H. Tsai;Shangjiang Chang;M. Crommie;N. Koratkar;Sufei Shi
  • 通讯作者:
    Debjit Ghoshal;Tianmeng Wang;H. Tsai;Shangjiang Chang;M. Crommie;N. Koratkar;Sufei Shi
Characterizing transition-metal dichalcogenide thin-films using hyperspectral imaging and machine learning
  • DOI:
    10.1038/s41598-020-68321-7
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Brian Shevitski;Christopher T. Chen;C. Kastl;T. Kuykendall;A. Schwartzberg;S. Aloni;A. Zettl
  • 通讯作者:
    Brian Shevitski;Christopher T. Chen;C. Kastl;T. Kuykendall;A. Schwartzberg;S. Aloni;A. Zettl
Frustration and Atomic Ordering in a Monolayer Semiconductor Alloy
  • DOI:
    10.1103/physrevlett.124.096101
  • 发表时间:
    2020-03-05
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Azizi, Amin;Dogan, Mehmet;Zettl, Alex
  • 通讯作者:
    Zettl, Alex
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Crommie其他文献

Michael Crommie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Crommie', 18)}}的其他基金

Collaborative Research: Tuning Graphene Nanoribbon Properties with Non-hexagonal Rings
合作研究:用非六角环调节石墨烯纳米带性能
  • 批准号:
    2204252
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Imaging Correlated Electron States in Single-layer Field-Effect Transistors
单层场效应晶体管中相关电子态的成像
  • 批准号:
    2221750
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Topologically-Engineered Graphene Nanoribbon-based Quantum Systems
RAISE-TAQS:拓扑工程石墨烯纳米带量子系统
  • 批准号:
    1839098
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Correlating Local Defect Structure with Dynamical Response in Graphene
将石墨烯中的局部缺陷结构与动态响应相关联
  • 批准号:
    1235361
  • 财政年份:
    2012
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Microscopy of Hierarchical 2-D Interface Structures
分层二维界面结构的显微镜观察
  • 批准号:
    1206512
  • 财政年份:
    2012
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Infrastructure Upgrade for U.C. Berkeley Atomic, Nanoscale, and Quantum Characterization Facility
加州大学基础设施升级
  • 批准号:
    0962799
  • 财政年份:
    2010
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Interactive Microscopy of Graphene Nanostructures
石墨烯纳米结构的交互式显微镜
  • 批准号:
    0906539
  • 财政年份:
    2009
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
NIRT: Molecular Spin-Active Nanoelectronics
NIRT:分子自旋活性纳米电子学
  • 批准号:
    0609469
  • 财政年份:
    2006
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NIRT: Synthesis and Control of Molecular Machines
NIRT:分子机器的合成与控制
  • 批准号:
    0210176
  • 财政年份:
    2002
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Low Temperature Scanning Tunneling Microscope Studies of Magnetic Nanostructures
磁性纳米结构的低温扫描隧道显微镜研究
  • 批准号:
    9971690
  • 财政年份:
    1999
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant

相似海外基金

Hybrid Pixel Detectors for Next-Generation Diffraction Cameras in Scanning Electron Microscopy
用于扫描电子显微镜中下一代衍射相机的混合像素探测器
  • 批准号:
    2888389
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Studentship
Exploring tunable magnet/superconductor hybrid quantum systems via spin-polarized low energy electron microscopy
通过自旋极化低能电子显微镜探索可调谐磁体/超导体混合量子系统
  • 批准号:
    512050965
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Research Grants
Exploring tunable magnet/superconductor hybrid quantum systems via scanning tunneling microscopy
通过扫描隧道显微镜探索可调磁体/超导体混合量子系统
  • 批准号:
    459025680
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Research Grants
Microscopy and Molecular Methods to Advance Performance and Design of Hybrid Biofilm Technology
显微镜和分子方法可提高混合生物膜技术的性能和设计
  • 批准号:
    RGPIN-2016-05222
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
Microscopy and Molecular Methods to Advance Performance and Design of Hybrid Biofilm Technology
显微镜和分子方法可提高混合生物膜技术的性能和设计
  • 批准号:
    RGPIN-2016-05222
  • 财政年份:
    2020
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
Transient Kerr Microscopy System for Studying Spin Transport in Semiconducting Hybrid Perovskite Quantum Materials
用于研究半导体混合钙钛矿量子材料中自旋输运的瞬态克尔显微镜系统
  • 批准号:
    RTI-2020-00499
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Research Tools and Instruments
Microscopy and Molecular Methods to Advance Performance and Design of Hybrid Biofilm Technology
显微镜和分子方法可提高混合生物膜技术的性能和设计
  • 批准号:
    RGPIN-2016-05222
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Hybrid adaptive optics: a new paradigm for faster, deeper, volumetric microscopy in scattering media
职业:混合自适应光学:散射介质中更快、更深入的体积显微镜的新范例
  • 批准号:
    1752405
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Microscopy and Molecular Methods to Advance Performance and Design of Hybrid Biofilm Technology
显微镜和分子方法可提高混合生物膜技术的性能和设计
  • 批准号:
    RGPIN-2016-05222
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Discovery Grants Program - Individual
MRI STROBE CONSORTIUM: Development of a Hybrid Photon-Electron Microscopy System for Functional Imaging of Multi-Scale Materials
MRI 频闪联盟:开发用于多尺度材料功能成像的混合光子电子显微镜系统
  • 批准号:
    1828705
  • 财政年份:
    2018
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了