Combining Optimization, Machine Learning, and Model Structure to Improve the Robustness and Agility of Modern Bipedal Machines
结合优化、机器学习和模型结构,提高现代双足机器的鲁棒性和敏捷性
基本信息
- 批准号:1808051
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Bipedal robots are being built to aid in search and rescue, provide last mile delivery of packages, and to assist people in their homes. Lower-limb exoskeletons are being designed to help patients recover the ability to walk after strokes or even severe injuries resulting in paralysis. While the feedback control algorithms required to allow a bipedal robot to walk and a patient to safely operate a lower-limb exoskeleton are not identical, they share enough common elements that pursing their investigation in tandem is insightful and important. This project combines recent advances in the ability to quickly compute energy optimal solutions of bipedal dynamical systems with the mathematics of machine learning and geometric control theory to achieve unprecedented performance and safety in bipedal walking. The proposed research will greatly expand the class of robots for which feedback controllers can be designed with provable stability and it will significantly enhance the safety than can be achieved with exoskeletons that allow a paraplegic to walk without the use of crutches. One of the many technical challenges to be overcome in this research is the complexity of the mathematical models that describe the movement these legged machines. For example, printing out the symbolic model for the exoskeleton studied here would take thousands of pages. If a human ever opened the files to examine them, they would be incomprehensible. Yet, the PI and his students provide concrete means for designing feedback controllers for these machines and say deep things about how the closed-loop system will behave. This is the beauty of feedback control theory when it is married with modern computational tools. In addition, each year, the PI and his students share the excitement of engineering by giving tours of his robotics lab to hundreds of students, from grade school through high school, sharing the excitement and personal fulfillment of careers in STEM fields. Presidents of major universities and management teams of corporations visit his lab for the pure pleasure of seeing a robot doing something amazing and yet at the same time, almost ordinary: walking roughly like a human. The PI works with the media to share with the general public the excitement of cutting-edge engineering research and how it benefits society. The project seeks major advances in the theoretical conception and practical synthesis of feedback controllers for bipedal robots and lower-limb exoskeletons. The theory will be carefully tested on a Cassie-series bipedal robot and an exoskeleton. The theoretical thrust of the proposal aims to mitigate obstructions imposed by high-dimensional bipedal models (dimension 30 or more), without resorting to simplified pendulum models that are all too common in the robotics literature. The research seeks to work directly with the full model of the robot, making it possible to generate motions that exploit its full capabilities while respecting actuator limitations, ground contact forces, and terrain variability. The process begins with trajectory optimization to design an open-loop periodic walking motion of the high-dimensional model, and then adding to this solution, a carefully selected set of additional open-loop trajectories of the model that steer toward the nominal motion. Supervised Machine Learning is used to extract from the open-loop behavior (i.e., the collection of input and state trajectories) a low-dimensional state-variable realization (i.e., a low-dimensional manifold and associated vector field). The special structure of mechanical models of bipedal robots is used to embed the low-dimensional model in the original model in such a manner that it is both invariant and locally exponentially attractive, and show that this locally exponentially stabilizes the desired walking motion in the full state space of the robot. Transitions among periodic orbits will also be addressed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人们正在建造两足机器人,以帮助搜索和救援,提供最后一英里的包裹递送,并帮助人们在家中。腿部外骨骼的设计是为了帮助患者在中风或甚至导致瘫痪的严重伤害后恢复行走能力。尽管允许两足机器人行走和患者安全操作下肢外骨骼所需的反馈控制算法并不完全相同,但它们有足够的共同点,因此同步推进他们的研究是有洞察力和重要的。该项目将快速计算两足动物动力系统能量最优解的能力的最新进展与机器学习的数学和几何控制理论相结合,以在两足行走中实现前所未有的性能和安全性。这项拟议的研究将极大地扩展反馈控制器可以设计为具有可证明稳定性的机器人的类别,并且它将比外骨骼实现的安全性显著提高,外骨骼允许截瘫患者不使用拐杖行走。在这项研究中需要克服的众多技术挑战之一是描述这些腿部机器运动的数学模型的复杂性。例如,打印出这里研究的外骨骼的符号模型需要数千页。如果有人打开这些文件来查看它们,它们将是不可理解的。然而,PI和他的学生提供了为这些机器设计反馈控制器的具体方法,并对闭环系统的行为进行了深入的讨论。这就是反馈控制理论与现代计算工具相结合时的美妙之处。此外,PI和他的学生每年都会通过带领数百名学生参观他的机器人实验室来分享工程方面的兴奋,从小学到高中,分享STEM领域职业生涯的兴奋和个人成就感。主要大学的校长和企业的管理团队访问他的实验室,纯粹是为了看到一个机器人在做一些令人惊叹的事情,但同时又几乎是普通的:像人类一样粗暴地行走。PI与媒体合作,与普通公众分享尖端工程研究的兴奋及其如何造福社会。该项目寻求在两足机器人和双腿外骨骼反馈控制器的理论构思和实用综合方面取得重大进展。这一理论将在卡西系列两足机器人和外骨骼上进行仔细的测试。该提案的理论主旨旨在减少高维两足动物模型(维度30或更多)造成的障碍,而不是求助于机器人文献中太常见的简化摆模型。这项研究寻求直接与机器人的完整模型一起工作,使其能够在考虑执行器限制、地面接触力和地形可变性的情况下产生充分利用其能力的运动。该过程以轨迹优化开始,以设计高维模型的开环周期性行走运动,然后向该解决方案添加一组精心选择的、朝向标称运动的模型的附加开环轨迹。有监督机器学习用于从开环行为(即,输入和状态轨迹的集合)中提取低维状态变量实现(即,低维流形和相关向量场)。利用双足机器人机械模型的特殊结构,将低维模型嵌入到原始模型中,使其既具有不变性,又具有局部指数吸引性,并证明在机器人的全状态空间中局部指数稳定期望的步行运动。这项裁决反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Toward Safety-Aware Informative Motion Planning for Legged Robots
为腿式机器人提供安全意识的信息性运动规划
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Teng, Sangli;Gong, Yukai;Grizzle, Jessy;Ghaffari, Maani
- 通讯作者:Ghaffari, Maani
Feedback Control Design for Robust Comfortable Sit-to-Stand Motions of 3D Lower-Limb Exoskeletons
- DOI:10.1109/access.2020.3046446
- 发表时间:2021
- 期刊:
- 影响因子:3.9
- 作者:M. E. Mungai;J. Grizzle
- 通讯作者:M. E. Mungai;J. Grizzle
IEEE Access Special Section Editorial: Real-Time Machine Learning Applications in Mobile Robotics
IEEE Access 专题社论:移动机器人中的实时机器学习应用
- DOI:10.1109/access.2021.3090135
- 发表时间:2021
- 期刊:
- 影响因子:3.9
- 作者:Ucar, Aysegul;Grizzle, Jessy W.;Ghaffari, Maani;Wahde, Mattias;Akin, H. Levent;Baltes, Jacky;Bozma, H. Isil;Miro, Jaime Valls
- 通讯作者:Miro, Jaime Valls
Combining trajectory optimization, supervised machine learning, and model structure for mitigating the curse of dimensionality in the control of bipedal robots
- DOI:10.1177/0278364919859425
- 发表时间:2019-07-08
- 期刊:
- 影响因子:9.2
- 作者:Da, Xingye;Grizzle, Jessy
- 通讯作者:Grizzle, Jessy
Bayesian Spatial Kernel Smoothing for Scalable Dense Semantic Mapping
- DOI:10.1109/lra.2020.2965390
- 发表时间:2019-09
- 期刊:
- 影响因子:5.2
- 作者:Lu Gan;Ray Zhang;J. Grizzle;R. Eustice;Maani Ghaffari
- 通讯作者:Lu Gan;Ray Zhang;J. Grizzle;R. Eustice;Maani Ghaffari
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessy Grizzle其他文献
Jessy Grizzle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessy Grizzle', 18)}}的其他基金
Learning-Aided Integrated Control and Semantic Perception Architecture for Legged Robot Locomotion and Navigation in the Wild
用于腿式机器人野外运动和导航的学习辅助集成控制和语义感知架构
- 批准号:
2118818 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Unified Feedback Control and Mechanical Design for Robotic, Prosthetic, and Exoskeleton Locomotion
NRI:协作研究:机器人、假肢和外骨骼运动的统一反馈控制和机械设计
- 批准号:
1525006 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
INSPIRE Track 1: The Mathematics of Balance in Mechanical Systems with Impacts, Unilateral Constraints, Underactuation and Hyper-sensing: Application to Agile bipedal Locomotion
INSPIRE 轨道 1:具有冲击、单侧约束、欠驱动和超感知的机械系统中的平衡数学:在敏捷双足运动中的应用
- 批准号:
1343720 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CPS: Frontier: Collaborative Research: Correct-by-Design Control Software Synthesis for Highly Dynamic Systems
CPS:前沿:协作研究:高动态系统的设计正确控制软件综合
- 批准号:
1239037 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Feedback Control of Highly Dynamic Spatial Locomotion in 3D Bipedal Robots
3D 双足机器人高动态空间运动的反馈控制
- 批准号:
1231171 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Analytical and Experimental Investigations of Feedback Control Designs for Bipedal Walkers and Runners
双足步行者和跑步者反馈控制设计的分析和实验研究
- 批准号:
0856213 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
EAGER: Insulin Delivery for Diabetes Management in the Intensive Care Unit as a Feedback Control Problem
EAGER:重症监护病房糖尿病管理中的胰岛素输送作为反馈控制问题
- 批准号:
0938288 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Hybrid Control for Agility and Efficiency in Bipedal Robots with Compliance
混合控制可提高双足机器人的灵活性和效率并具有合规性
- 批准号:
0600869 - 财政年份:2006
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Feedback Control Design for Bipedal Robots
双足机器人反馈控制设计
- 批准号:
0322395 - 财政年份:2003
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
- 批准号:
2339216 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Adaptive Ising-machine-based Solvers for Large-scale Real-world Geospatial Optimization Problems
基于自适应 Ising 机的大规模现实世界地理空间优化问题求解器
- 批准号:
24K20779 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Machine Learning for Discrete Optimization
职业:用于离散优化的机器学习
- 批准号:
2338226 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Optimization of Power Electronics using Artificial Intelligence and Machine Learning Techniques
使用人工智能和机器学习技术优化电力电子
- 批准号:
2890188 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
Advanced Machine Learning with Bilevel Optimization
具有双层优化的高级机器学习
- 批准号:
DP230101540 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Discovery Projects
Sustainable Maritime Transportation Network considering Sulphur Fuel Regulation - Application of Advanced Machine Learning and Optimization
考虑硫燃料监管的可持续海上运输网络 - 先进机器学习和优化的应用
- 批准号:
2885828 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship